
 THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : MATHÉMATIQUES & INFORMATIQUE

Arrêté ministériel : 25 mai 2016
Présentée par

Luc LIBRALESSO

Thèse dirigée par
Louis ESPERET, Chargé de Recherche CNRS, G-SCOP

et co-encadrée par
Vincent JOST, Chargé de Recherche CNRS, G-SCOP
Thibault Honegger, Chief Scientific Officer, NETRI

préparée au sein du
Laboratoire des Sciences pour la Conception, l'Optimisation
et la Production de Grenoble (G-SCOP)

dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique (ED-MSTII)

Recherches arborescentes anytime
pour l’optimisation combinatoire

Anytime tree search algorithms for
combinatorial optimization

Thèse soutenue publiquement le 24 Juillet 2020
devant le jury composé de :

Monsieur Christian ARTIGUES
Directeur de Recherche, CNRS, LAAS, Rapporteur

Monsieur Louis ESPERET
Chargé de Recherche, CNRS, G-SCOP, Directeur de thèse

Monsieur Jin-Kao HAO
Professeur, Université d’Angers, Rapporteur

Monsieur Thibault HONEGGER
Chief Scientific Officer, NETRI, Co-encadrant de thèse

Monsieur Vincent JOST
Chargé de recherche CNRS, G-SCOP, Co-encadrant de thèse

Madame Christine SOLNON
Professeur, INSA de Lyon, Examinateur

Monsieur Vincent T’KINDT
Professeur, Université de Tours, Examinateur, Président du jury

Remerciments

Cette thèse est le résultat d’un grand nombre de rencontres, de collaborations au long de
ces 3 dernières années. J’aimerais remercier en particulier:

• Christian Artigues, Jin-Kao Hao, Christine Solnon et Vincent T’Kindt. Merci d’avoir
pris le temps de lire mes travaux et pour vos nombreux conseils et remarques.

• Abdel-Malik Bouhassoun, Aurélien Secardin, Pablo Andres Focke pour avoir accepté
de faire vos stages avec moi. Ce fut un plaisir de travailler avec vous. Merci.

• Florian Fontan d’avoir accepté de participer avec moi au challenge ROADEF et pour
toutes les discussions très enrichissantes. J’ai vraiment appris beaucoup grâce a toi.
Merci.

• Thibault Honegger et Florian Larramendy. Votre force de travail et enthousiasme
est une immense source d’inspiration pour moi. Je vous souhaite le meilleur pour la
suite, bien que j’ai aucun doute que vous allez y arriver.

• Louis Esperet, Thibault Honegger, et Vincent Jost pour avoir accepté de diriger ma
thèse. Grace a vous, j’ai passé 3 excellentes années, Merci d’avoir cru en moi. Merci
pour tout.

• Van-Dat Cung et Hadrien Cambazard pour tous vos conseils et discussions, merci.

• Nadia Brauner pour m’avoir fait découvrir la recherche opérationnelle, et pour tous
tes conseils, merci.

• L’ensemble des personnes que j’ai pu rencontrer à G-SCOP et à Netri. Merci pour
tous ces bons moments.

• L’équipe administrative de G-SCOP, en particulier Marie-Jo, Fadila et Myriam pour
m’avoir permis de faire ma thèse dans des conditions optimales.

• Une petite dédicasse à Aldric, Karine et Marlène, ainsi que tous les membres de Eat
& Move. Merci pour toute la bonne humeur et toutes ces super séances.

• Ma partenaire de vie et ma meilleure amie, Adèle.

• Enfin, mes parents pour avoir pris grand soin de mon éducation et pour m’avoir
transmis le goût des sciences.

3

Abstract

Tree search algorithms are used in a large variety of applications (MIP, CP, SAT, meta-
heuristics with Ant Colony Optimization and GRASP) and also in AI/planning communi-
ties. All of these techniques present similar components and many of those components can
be transferred from one community to another. Preliminary results indicate that anytime
tree search (search techniques from AI/planning) can be part of the operations research
toolbox as they are simple and competitive compared to commonly used metaheuristics in
operations research.

In this work, we detail a state of the art and a classification of the different tree
search techniques that one can find in metaheuristics, exact methods, and AI/planning.
Then, we present a generic framework that allows the rapid prototyping of tree search
algorithms. Finally, we use this framework to develop anytime tree search algorithms
that are competitive with the commonly-used metaheuristics in operations research. We
report new tree search applications for some combinatorial optimization problems and new
best-known solutions.

Main messages:

• anytime tree search algorithms can be competitive with classical meta-heuristics on
large scale discrete optimization instances by using anytime tree search strategies.

• The combination of algorithmic components from different communities (AI, CP,
meta-heuristics, branch-and-bounds) combined with a study on the contribution of
each component leads to new algorithms that are competitive, and sometimes, even
simpler than the state-of-the-art methods from each of these communities.

5

Résumé

Les recherches arborescentes sont utilisées dans un grand nombre d’applications (MIP,
CP, SAT, metaheuristiques avec Ant Colony Optimization et GRASP) et également dans
des communautés IA/planning. Toutes ces techniques présentent des bases communes et
de nombreuses techniques peuvent être transférées d’une communauté à une autre. Les
résultats préliminaires indiquent que ces techniques ont toute leur place dans la boite a
outils des méthodes les plus performantes en recherche opérationnelle.

Dans ces travaux, nous dressons un état de l’art et une classification de différentes
techniques de recherche arborescente que l’on retrouve dans les metaheuristiques, dans les
méthodes exactes et en IA/planning. Nous développons un framework générique qui per-
met l’élaboration rapide d’algorithmes de recherche arborescente. Enfin, nous utilisons ces
techniques pour proposer des méthodes compétitives avec les metaheuristiques générale-
ment utilisées en recherche opérationnelle. Nous présentons de nouvelles méthodes de
recherche arborescente pour plusieurs problèmes d’optimisation combinatoire ainsi que de
nouvelles meilleures solutions connues.

Messages principaux :

• Les recherches arborescentes anytime peuvent être compétitifs comparé aux meta-
heuristiques classiques sur des instances de grande taille grâce aux recherches ar-
borescentes anytime.

• La combinaison de composants algorithmiques habituellement utilisés par différentes
communautés (IA, CP, meta-heuristiques, branch-and-bound) ainsi que l’étude des
contributions de ces composants permet de produire des algorithmes nouveaux, com-
pétitifs, et parfois plus simples que les méthodes état de l’art issues de chacune de
ces communautés.

6

Introduction

While facing a hard combinatorial optimization problem, two types of solutions are usually
considered:

• Exact methods allow to find optimal solutions at the price of potentially very long
computation time. In this category, we find Mixed Integer Programming methods,
Constraint Programming etc. This kind of methods generally use tree search tech-
niques that usually rely on strong bounds and cuts like the cutting-plane algorithm
or the branch-and-price algorithm etc.

• Meta-heuristics that allow to find near-optimal solutions. These methods usually
rely on fast operators (neighborhoods, crossovers, mutations, etc.) and various search
strategies (Simulated Annealing, Tabu Search, Evolutionary Algorithms, Ant Colony
Optimization).

Tree search is mainly found in exact methods. In this specific context, Depth First Search
or Best First Search seem to be the most suited methods. The first one for its simplicity,
limited memory usage, and backtrack-friendliness. The second for its ability to improve
bounds quickly and prove optimality in a (relatively) small amount of nodes1. However,
on large instances, these methods do not usually obtain good quality solutions. Indeed,
Depth First Search is prone to choose a bad branch early in the tree search and is not
able to escape from it. Best First Search is prone to find solutions late in the search (thus
not finding any solutions within hours of computation). We also note that work has been
done to allow these methods to find good solutions fast (using a restarting strategy for
Depth First Search and diving for Best First Search). But these improvements are usually
insufficient to compete with classical meta-heuristics.

This is why it is usually admitted that tree search algorithms are not suited to solve
large-scale or industrial instances.

1We note that this hypothesis is sometimes questioned [STDC18, TDCE04]

7

From Mathematical Programming Solver based on Local Search ([GBD+14]):

“ Tree search approaches like branch-and-bound are in essence designed to prove op-
timality [...] Moreover, tree search has an exponential behavior which makes it not
scalable faced with real-world combinatorial problems inducing millions of binary de-
cisions. ”

It may be interesting to re-evaluate the inefficiency of tree search algorithms to find
near-optimal large-scale/industrial combinatorial optimization problems. Indeed, there
are other tree search techniques originally proposed since the sixties in AI or planning
conferences. To cite a few, we find Beam Search [OM88], well-known for its success to solve
scheduling or packing problems, Limited Discrepancy Search [HG95], used intensively in
Constraint Programming solvers, Anytime Column Search [VGAC12] etc. In this context,
tree search can be used to find solutions quickly and continuously improve them similarly
to the behavior of classical meta-heuristics (until they reach a stopping criterion or prove
optimality by depleting the search tree). We qualify search methods with this property as
Anytime algorithms (in our case Anytime Tree Search algorithms).

In this thesis, we show that, on several problems, it is possible to obtain competitive
(and state of the art) methods only based on tree search algorithms (thus not using any
local search or population-based strategies). We describe a general methodology to build
efficient tree search techniques that are competitive with classical meta-heuristics. Our first
main contribution presents an anytime tree search for the EURO/ROADEF challenge 2018
where our method was ranked first among 64 registered participants. Our second main
contribution is also a simple anytime tree search algorithm for the Sequential Ordering
Problem [Esc88] (Asymmetrical Traveling Salesman Problem with precedence constraints).
This problem has been studied intensively during the last 30 years and a large variety
of methods have been developed to solve it. It is especially well-known because it has
instances with less than 50 cities that are still open. We propose a simple anytime tree
search algorithm (approximately 200 lines of C++ code) that results from a study over
many Branch-and-Bound algorithmic components. This method was able to improve best-
known solutions on 6 over 7 open instances from the SOPLIB. During the design of these
two methods, it appeared that the best combinations of ideas were often counter-intuitive,
thus, it seems that a rigorous study of the influence of each tree search idea is required. To
this extent, we developed a generic anytime tree search framework that allows us to rapidly
prototype tree search techniques and integrate a large variety of components (we named it
Combinator-based Anytime Tree Search framework). We used it to develop and benchmark
our ideas and algorithms. This framework is our third (and last) main contribution in this
thesis.

8

Outline of the thesis

Chapter 1 presents an introduction and a survey of anytime tree search algorithms
existing in exact methods, Meta-heuristics, AI, Planning. In this chapter, our goal is to
provide unified notations and try to integrate the best of each community (with a slight bias
towards Operations Research due to our background). Some components were designed
multiple times by different communities, some were unique to each community and we
show that integrating these components can lead to significant performance improvement.

Chapter 2 presents the Combinator-based Anytime Tree Search framework that we de-
veloped. While designing anytime tree search algorithms it appeared that the best com-
binations were often counter-intuitive. A strong benchmarking of algorithmic components
was needed. This framework allows rapid prototyping of tree search ideas. We present its
general architecture, the main features, and a quick usage example in Section ??.

Chapter 3 presents the algorithm we designed for the EURO/ROADEF 2018 challenge,
we present the challenge subject, its industrial context, the problem specific parts. We
provide an analysis of the impact of some tree search components applied to this problem.
This chapter is inspired by an article we submitted [LF20b]. This Chapter and Chapter 4
are independent, thus, the later may be read before this one.

Chapter 4 presents the algorithm we designed for the Sequential Ordering Problem
(SOP). We present a comprehensive study of several tree search components. We show
that a simple combination of these leads to a state of the art algorithm that can find new
best-known solutions on the largest SOPLIB instances in a few seconds where previous state
of the art more complex methods (namely Lin-Kernighan-Held and Ant Colony System
combined with Simulated Annealing) needed thousands of seconds. This chapter is inspired
by an article accepted at ECAI2020 [LBCJ20].

Appendix A presents an article we submitted with Florian Fontan on an academic/industrial
continuation of the EURO/ROADEF 2018 challenge [FL20a]. We investigate various guil-
lotine Cutting & Packing problems and evaluate the performance of the ideas presented in
Chapter 3.

9

About my research

My Ph.D. topic was originally focused on organ on chip approaches in neuroscience using
microfluidic devices (partnership with NETRI2). For reasons that fall beyond the scope of
this manuscript, we decided to focus on my work on anytime tree search algorithms. The
following contributions will not be included in this manuscript:

Microfluidic chip automatic design: Microfluidic chip devices for neurology are a
(relatively) new way to study the impact of neurodegenerative diseases (for instance,
Alzheimer’s disease, Parkinson’s disease etc.) [TJ10]. They are more precise, less in-
trusive, and may replace some animal testing. However, such devices are difficult to design
because of multiple microfluidic constraints (maximal axon lengths, fluid speed while in-
seminating the device etc.) and fabrication constraints (3D printing resolution, mechanical
constraints on the polymer etc.). Such constraints make the chip design especially tedious.
It sometimes takes months in order to design one chip (and we do not even discuss trial
and errors caused by the fact that the neuron behavior is not fully understood yet!). In
this research direction, we developed algorithms that aim at facilitating the design of chips,
based on the neurofluidic design rules previously established. This research direction in-
volves lots of modelization to obtain a realistic (yet solvable) model, some graph theory
(as one part of the problem is to find outer-planar embeddings of a graph) and some al-
gorithmic geometry. The algorithms have been packaged in a chip designer open-source
software (written in javascript to be easily usable).

Triangle width: We investigated a simplified version of an embedded-vision problem
that involves an input and an output processor. The input processor has to process a set of
tasks X and the output processor, a set of tasks Y . Some tasks in Y may have predecessors
in X. We show that this problem is NP-hard. We also show that this problem is related
to some scheduling problems, and, (surprisingly) is also related to some graph theory
problems (graph visit) and matrix visualization. We built a web interface to visualize
and solve small instances by hand http://librallu.gitlab.io/hypergraph-viz/ and
submitted an article with Florian Fontan, Khadija Hadj Salem, Vincent Jost and Frédéric
Maffray [LJS+19].

Balanced words: We present new results and conjectures on N letters balanced words.
We published an article in Theorical Computer Science with Nadia Brauner, Yves Crama,
Etienne Delaporte and Vincent Jost [BCD+19]. This is based on work I did during an
earlier internship with Vincent Jost.

Summer school Meta-heuristic competition: I took part in the Meta-heuristic Sum-
mer School 2018 competition (MESS18). The competition was about solving the balanced
TSP (Given a graph G = (V,E) and some target value T , find a tour whose edge sum
is closest to T). It happened that the instances had some interesting properties (small
amount of edges and edge cost could be decomposed in two lexicographic objectives). This
allowed to design a MIP model that solved to optimality all instances of the dataset. A
report is available online [Lib20].

2Neuro Engineering Technologies Research Institute (https://netri.fr)

10

http://librallu.gitlab.io/hypergraph-viz/
https://netri.fr

Contents

1 Anytime tree search algorithms – An overview 13
1.1 Tree search algorithms in operations research 13
1.2 Fundamental tree search algorithms . 15
1.3 Anytime tree search algorithms from AI/planning 22
1.4 Constructive meta-heuristics seen as tree search 34

2 Combinator-based Anytime Tree Search framework (CATS) 39
2.1 Why a generic search framework? . 39
2.2 Towards a generic tree search . 42
2.3 Generic tree search modifications – the combinators 42
2.4 Implemented algorithms . 47

3 A tree search for the EURO/ROADEF 2018 challenge 49
3.1 Introduction . 50
3.2 Problem description . 50
3.3 Definitions and notations . 52
3.4 Branching scheme . 53
3.5 Tree search . 56
3.6 Numerical results . 59
3.7 Conclusion and perspectives . 64

4 Tree search algorithms for the Sequential Ordering Problem (SOP) 65
4.1 Introduction . 66
4.2 A search tree for the SOP . 68
4.3 Dominance pruning . 70
4.4 Computational results . 71
4.5 Conclusions and future works . 72
4.6 A CATS-framework application example . 76

5 Conclusions & Perspectives 85
5.1 Main conclusions . 85
5.2 Perspective and future research . 88

Bibliography 91

A PackingSolver: a solver for guillotine packing problems 107
A.1 Introduction . 108
A.2 Literature review . 109

11

A.3 Algorithm description . 110
A.4 Computational experiments . 113
A.5 Discussion . 115
A.6 Conclusion and future work . 119

12

1
Anytime tree search algorithms – An overview

This chapter presents an overview of various anytime tree search techniques. We present
anytime tree search algorithms in a unified language inspired from the vocabulary present
within Operations Research, AI, planning and meta-heuristics.

Contents
1.1 Tree search algorithms in operations research 13

1.2 Fundamental tree search algorithms . 15

1.2.1 Breadth First Search (BrFS) 18

1.2.2 Depth First Search (DFS) . 19

1.2.3 A* / Best First Search . 20

1.2.4 Greedy algorithms . 22

1.3 Anytime tree search algorithms from AI/planning 22

1.3.1 Limited Discrepancy Search (LDS) 24

1.3.2 Beam Search (BS) . 26

1.3.3 Weighted A* (WA*) . 28

1.3.4 Anytime Column Search (ACS) 29

1.3.5 Simplified Memory-bounded A* (SMA*) 30

1.3.6 Other tree search algorithms . 30

1.4 Constructive meta-heuristics seen as tree search 34

1.4.1 Greedy Random Adaptive Search Strategy (GRASP) 34

1.4.2 Ant Colony Optimization (ACO) 34

1.1 Tree search algorithms in operations research

Tree search algorithms are omnipresent within Operations Research. Indeed, most pro-
posed methods to solve a given discrete optimization problem in practice rely on Mixed
Integer Formulations, Constraint Programming or SAT. These problems are usually solved
by means of a Branch-and-bound.

13

LPopt
A

A

(a) The root node (A) consists in a polyhedron A where we want to find the best integer
solution. Most algorithms use the simplex algorithm. It allows to solve the linear relaxation
that has proven to be useful in many circumstances.

LPopt

B

C

A

B C

xi ≥ dce

xi ≤ bcc

xi ≥ dce xi ≤ bcc

(b) The Branch-and-bound uses the simplex result (LPopt) to decide where to branch (i.e.
divide the polyhedron into two parts). It generates two children B and C. Then, each of
these children will be explored as it is usually done within divide-and-conquer schemes.

Figure 1.1: Example of a Mixed Integer Programming Branch-and-Bound resolution.

14

For instance, Figure 1.1 presents an example of a MIP-based Branch-and-Bound. This
algorithm decomposes a polyhedron into two separate polyhedrons. At each iteration, each
node (defined as a polyhedron) is terminal (i.e. the linear relaxation is an integer or infea-
sible) or generates two children. Many different search strategies, choices on the variable
to branch etc. have been studied. We refer the reader to [Ach09] for more information
about Mixed-Integer-Programming based Branch-and-bounds.

A second well-known example of tree search algorithms is Constraint Programming (CP)
models. They consist of a definition of the problem using variable domains and constraints
that reduce the variable domains. The algorithm applies a succession of variable domain
reduction algorithms. Once it is not able to prune additional values of the domains (we say
a fixed-point is reached), the algorithm branches by adding some new constraints (usually
of the form x = c and x 6= c). Figure 1.2 presents an example of a very simple CP tree
search where the goal is to find a 3-coloring of a map. Each variable (country) can be
assigned 3 colors (red, green, blue). Two adjacent countries should not have the same
colors (constraints)1.

A final well-known example of tree search in Operations Research is dedicated Branch-
and-bounds. It consists in a “smart” enumeration of all possible feasible solutions. They
take advantage of some problem-specific properties. In the worst case, they enumerate
all the solutions as a brute-force algorithm would do. Figure 1.3 presents an example of
a dedicated branch-and-bound for the Asymmetric Traveling Salesman Problem (ATSP).
In the leftmost branch, the branch-and-bound found a feasible solution which has cost 6
(a, b, d, c, e). On the branch a, b, c the branch-and-bound stops because it cannot continue
(the only arcs going out of c are c, b but b is already taken in the partial solution and c, e
but e cannot be selected since it should be the last one to be selected (and d is not selected
yet). Finally, branches a, c, b, a, d, b, c and a, d, c, b (with costs 7, 7 and 8 respectively) are
not explored further because the cost of the partial solution they provide is larger than the
feasible solution at cost 6. Thus, they would not provide a better solution than 6.

1.2 Fundamental tree search algorithms

Before introducing anytime tree search algorithms, we first describe three fundamental
tree search techniques (Breadth First Search, Depth First Search and A*) as almost all
anytime tree search techniques are based on these. We briefly present these 3 fundamental
algorithms, then introduce their respective variants.

First, it is worth noticing that all algorithms presented in the previous subsection share
some similarities. Indeed, they intrinsically define a search tree. This tree is defined by
the following elements.

• A root node (in MIPs the original polyhedron ; in CP, the original formulation with
no additional constraint due to branching).

1We may note that one can build a more efficient model that uses more inference, for instance by
adding AllDifferent constraints to some cliques and some symmetry breaking strategies.

15

a b

c

d

a b

c

a b

c

d

colord = blue colord 6= blue

colorb = green colorb 6= green

Figure 1.2: Example of a Constraint Programming tree exploration. The root node de-
scribes the original problem. In this node, no domain reduction can be done. The algorithm
chooses then to branch (on this example on the country d and color blue). The leftmost
child has d assigned color blue. Also, it can be deduced from the constraints that a and
b cannot be assigned color blue. Finally, the algorithm branches again (here on b with
color green). It can be deduced that a cannot be assigned color green (nor color blue from
the previous node reasoning). The only remaining available color for a is red. Thus, a is
assigned color red. Finally, by the same reasoning, c can be assigned color blue. The same
process goes on for the other nodes. As we can see in this example, Constraint Program-
ming takes advantage of computations done within each node to prune domains and thus
be able to explore a smaller tree.

16

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

(a) Asymmetric Traveling Salesman exam-
ple. A traveling salesman wants to go from
a to e while minimizing the traveling cost
(indicated on the arcs)

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

b c

4 4

c b

7 8

(b) Tree resulting from a dedicated
Branch-and-Bound computation.

Figure 1.3: Dedicated Branch-and-bound example performed on an instance of the Asym-
metric Traveling Salesman Problem.

• A way to generate children from a given node (in MIPs, splitting the polyhedron, in
CP fixing a variable to a value or forbidding it to take this value).

• Possibly some bounds (LP relaxation in MIPs)

• A way to tell that a given node encodes a feasible solution (in MIPs, an integer LP
solution, and in CP a node where all domains contain a single value).

Formally, a generic tree search algorithm relies on a few problem specific parts:

• How to define the root node. Usually, a root node is given as a parameter for the
search procedure.

• From a given node, how to generate its children. As we develop later in this thesis,
either all the children are expanded at the same time (expandChildren procedure),
which is common among tree search algorithms present in the literature (all but one
algorithms presented in this thesis use this procedure). There also exists another
way: expanding children one by one. When a child of a given node n is extracted, n
stays active (i.e. in memory) until it does not have children anymore. In this case,
we use the primitives hasNextChildren and expandNextChildren). These
procedures are required by SMA* (see later in this chapter).

• A procedure that tells whether the node is a solution or not. We call this procedure
isGoal as it is usually done in planning algorithms.

• An optimistic estimate of the best possible solution reachable below the node n (lower
bound for minimization problems). It allows to prune dominated nodes that have a
bound worse than the best solution found during earlier stages of the search. We call

17

it f(n). Later in this thesis we consider it as a sum of two estimates and show that
this decomposition can be useful to define more advanced tree search components.

• Possibly a non-optimistic estimate of the best possible solution reachable below the
node n. We call it f ′(n). We name it the guide function. In some cases, as we discuss
in Chapter 3, guiding the search using a bound can lead to poor-quality solutions.

In the following examples of tree search algorithms, light blue nodes are active nodes.
They exist in the tree search memory and will be eventually explored or pruned before the
end of the search. Dark gray nodes are inactive nodes. They were explored and are not
explicitly maintained within the tree search memory2. Also, the isGoal condition is tested
at each opened node and keeps the best goal node in memory, we do not include this part
in the pseudo-codes to make them clearer. Prunings due to bounds are also performed in
each Branch-and-bound algorithm presented in this thesis and not shown in pseudo-codes
for the same reason unless we explicitly tell that bounding induced prunings are disabled.

1.2.1 Breadth First Search (BrFS)

Breadth First Search is mostly known for its use within many graph algorithms. We refer
to [CLRS09] for more information about such graph algorithms. Figure 1.4 presents an
example of Breadth First Search. Note that Breadth First Search is usually referred as
BFS or BrFS. In this thesis, we choose to use the BrFS notation as BFS sometimes stands
for Best First Search (regarding Best First Search, we refer to it as Best First to avoid
potential confusions).

Algorithm 1.1 presents a Breadth First Search pseudo-code. The algorithm maintains
the current level. At the beginning (line 1) the first level corresponds to the root. Each
iteration (lines 2 to 8) explores a new level by expanding all children of the current level.
At the end of the iteration, the next level replaces the current level (line 7).

Algorithm 1.1: Breadth First Search pseudo-code
Input: root node: root

1 level← {root}
2 while level 6= ∅ do
3 nextLevel← ∅
4 foreach n ∈ level do
5 nextLevel← nextLevel ∪ expandChildren(n)
6 end
7 level← nextLevel
8 end

2Some algorithms explicitly maintain all the partial solution within each node, so they do not have to
keep in memory inactive nodes. Some other algorithms only use information relative to the last decision
taken within each node. Thus, inactive nodes are required to be able to retrieve solutions. The last one
usually consumes less memory but is harder to implement. During our experiments, we did not observe
a significant performance difference between the two strategies. Thus, we only consider in this document
the former one as it is simpler.

18

(a) Initial State, only the root
node is considered

(b) The algorithm expands
the root node. At the end of
the iteration, its children are
in memory.

(c) The algorithm expands all
the nodes at level 1. At the
end of the iteration, all level
2 nodes are in memory.

Figure 1.4: Breadth First Search iterations. Each iteration explores fully a level of the
tree.

1.2.2 Depth First Search (DFS)

As Breadth First Search, Depth First Search is very well-known for its use in diverse
graph algorithms. Because of its simplicity, its ability to obtain goal nodes quickly (valid
solutions), and its backtracking friendliness, it was (and still is) used extensively in many
optimization algorithms. Figure 1.5 presents an example of a tree exploration.

(a) initialization
(b) all root children are ex-
panded

(c) the first child of the root
is expanded

(d) some goal nodes are found (e) the algorithm backtracks
(f) some more goal nodes are
found

Figure 1.5: Depth First Search iterations.

19

Algorithm 1.2 presents a Depth First Search pseudo-code. The algorithm starts by
initializing a stack data-structure containing only the root node (line 1). The algorithm
starts expanding the last node added to the stack until it is empty (lines 2-6).

Algorithm 1.2: Depth First Search pseudo-code
Input: root node: root

1 stack← {root}
2 while stack 6= ∅ do
3 n← stack.pop()
4 foreach c ∈ expandChildren(n) do
5 stack.push(c)
6 end
7 end

1.2.3 A* / Best First Search

We now present the A* search algorithm [HNR68]. In the context of minimization
problems, it consists in selecting first a node with the minimal lower bound. Using this
strategy, when A* reaches a goal node (feasible solution), it is guaranteed to be optimal
and the search stops. Indeed, let n be the first goal node. Since A* opens the node with the
minimal lower bound, opening the node n indicates that the value of the solution encoded
by n is smaller or equal to any other remaining node lower bound. Thus, n encodes an
optimal solution.

The lower bound f(n) used by A* takes its inspiration from shortest paths problems
from s to t. It is usually divided into two parts: g(n) (the distance from s to n) and h(n)
(the “as the crow flies” estimate of the distance from n to t) where f(n) = g(n) + h(n):

• g(n) which indicates the prefix cost. It corresponds to the cost of all decisions taken
in order to reach the node n.

• h(n) which indicates the suffix cost. It corresponds to an optimistic estimate of the
cost to reach the best possible goal node below n.

The f(n) = g(n) + h(n) bound decomposition is widely used in the AI/planning3 and
seldom used in Operations Research. This decomposition is useful to design new guides for
tree search variants (see the next section) and dominance-breaking schemes (see the next
chapter).

3In the AI/planning communities, h(n) is called as an admissible heuristic, heuristic (in Greek: to find,
discover), because it helps to find solutions, and admissible, because it never overestimates a cost (i.e. a
lower bound). By contrast, non-admissible heuristics can overestimate costs. We believe that this notation
is counter-intuitive in operations research since heuristics usually indicate functions that can overestimate
costs. In this thesis, we use the terminology “bounds” instead of admissible heuristics and “guides” instead
of non-admissible heuristics. For instance, it is common in AI/planning to describe A* (an exact/complete
search) as “heuristic search”

20

Best First Search, (a generalization of A*) is guided by some function f ′(n) (not neces-
sarily a bound). Technically, A* is a particular case of Best First Search since bounds can
also be (and usually are) used as guides. However, in this thesis, we use the term “A*” to
designate Best First Search algorithms guided by a bound and use the term “Best First”
to designate algorithms that are not guided by a bound.

Figure 1.6 presents an example of a A*/Best First Search. The bounds/guides are
represented by the numbers next to the nodes.

0 0

2 1 4

0

2 1 4

3 4

0

2 1 4

3 44 5 6

0

2 1 4

3 44 5 6

3 4

0

2 1 4

3 44 5 6

3 4

4 5

Figure 1.6: A*/best first search iterations

Algorithm 1.3 presents a Best First Search pseudo-code. The algorithm starts by initial-
izing a priority-queue data-structure containing only the root node (line 1). The algorithm
starts by expanding the best node added to the stack until it is empty (lines 2-6). If
the algorithm is A*, we may stop the algorithm as soon as it finds a goal node (feasible
solution).
Algorithm 1.3: Best First Search pseudo-code
Input: root node: root

1 priorityQueue← {root}
2 while priorityQueue 6= ∅ do
3 n← priorityQueue.extractMin()
4 foreach c ∈ expandChildren(n) do
5 priorityQueue.push(c)
6 end
7 end

Parallel with shortest paths The primary use of A* was as a shortest path algorithm
[HNR68]. Shortest path algorithms are fundamentally based on tree search algorithms
where the root is the start vertex. The children of a given node are all unvisited neighbors

21

of the node n. Dijkstra’s algorithm4 can be seen as a variant of Best First Search guided by
g(n) which is the distance from s to n. The A* algorithm uses an additional information
h(n) that is a lower bound on the distance from n to t. In the case of path-finding, it is
usually the distance as the crow flies from n to t.

s t

n

f∗

g(n)

Expanded nodes

(a) Illustration of Dijkstra’s algorithm. In this
example, all costs are unitary thus Dijkstra’s al-
gorithm, Breadth First Search and a Best First
algorithm guided by g(n) are equivalent.

f∗s t

nf(n) = g(n) + h(n)

Expanded nodes

(b) Illustration of A* algorithm. It uses an ad-
ditional lower bound that underestimates the
cost to go from n to t (in this case the distance
between n and t)

Figure 1.7: Shortest path algorithms examples. We show that the use of the “suffix” bound
h(n) helps to dramatically reduce the number of expanded nodes in this example.

1.2.4 Greedy algorithms

Surprisingly, greedy algorithms can be seen as another (fundamental and very simple)
tree search. At each iteration, only the best child is selected for further expansion (the
other children are discarded) until a solution is found. It is used in many contexts (from
algorithms like Kruskal’s algorithm [CLRS09] where the matroid theory guarantees that
the solution obtained by the greedy algorithm is also optimal, to local search or population-
based algorithms where it is used as a way to quickly obtain a solution as an initialization
step). Such inclusion of greedy algorithms within tree search may seem surprising as they
are usually considered as distinct concepts. We believe that it is inclusion is useful while
considering anytime tree search algorithms. One of the main reasons is that many tree
search algorithms we discuss later in this chapter can behave like a greedy algorithm. For
instance, Beam Search, with a beam width of 1, is equivalent to a greedy algorithm. But
if Beam Search has a very large beam width, it behaves like a branch and bound. Also, as
we define an algorithm as tree search if it explores the tree, it becomes natural to classify
greedy algorithms as tree search.

1.3 Anytime tree search algorithms from AI/planning

All the fundamental algorithms presented in the previous sections (Breadth First Search,
Depth First Search, A*) have qualities, but also some drawbacks. The algorithms we
present in this section are based on these 3 algorithms and aim to correct some of their
drawbacks.

4In the tree search vocabulary, this kind of algorithms (guided by g(n)) is refered as Uniform Cost
Search. In order to limit the number of notations used in this thesis, we will refer these algorithms as A*
guided by g(n) and h(n) = 0

22

Figure 1.8: Example of a greedy execution. The best child of each node (the leftmost one)
is chosen where the others are discarded.

Breadth First Search and Best First Search are not anytime (i.e. they are not able to
provide solutions in a reasonable amount of time). On large instances, they may not be able
to provide any solution within the time limit and the available memory. The main quality
of A* is that it opens no node that has a lower bound worse than the best-so-far solution.
Depth First Search is anytime (since it dives to the first child of a node before exploring its
siblings, usually leading it to find a feasible solution quickly). It is also memory bounded
(it contains at most db nodes where d is the maximum depth of the search tree and b
the maximum number of children for a given node). However, it suffers from early bad
decisions taken in the search tree. Indeed, on large instances, if DFS picks a child that does
not lead to an optimal solution (which is likely to happen since guidance is often considered
as imprecise close to the root), it has to explore the whole sub-tree before being able to
overcome from a bad decision given at a given branch (that is virtually impossible to do
because of the exponential nature of the search tree). Thus, DFS usually does not yield
competitive results compared to meta-heuristics on large instances. Table 1.1 summarises
the pros and cons of the fundamental tree search algorithms using the following (informal)
criteria usually considered in the AI/planning communities:

Anytime: Ability to provide feasible solutions quickly and tries to improve them in the
later stages of the search.

Memory bounded: performs the search using a polynomial amount of memory. Algo-
rithms that do not have this property may exceed the available amount of memory.

Not sensitive to initial solutions: Ability to perform the search efficiently without re-
quiring an initial solution.

Complete: Ability to detect when the search tree is depleted. This property is crucial for
exact methods.

23

DFS A*/BFS BrFS Greedy
Anytime X

Memory bounded X X
not sensitive to initial solutions X X X

Complete X X X

Table 1.1: Advantages (and Drawbacks if a case is not checked) of fundamental tree search
algorithms

As said before, the anytime algorithms presented below aim to correct some of the
drawbacks of the fundamental algorithms. Figure 1.9 presents different inspirations from
Breadth First Search, Depth First Search and A*. For instance, Beam Search (BS) can be
seen as a truncated BrFS, LDS as an incomplete DFS that allows to overcome bad early
decisions etc. We believe that many Operations Research practitioners are unaware of most
of the existing tree search techniques in the AI/planning literature. We present in this
section some of the most useful (in our opinion) tree search algorithms from AI/planning
for discrete optimization.

BrFS DFS A*

BS LDS wA*

SMA*/MBA*ACS

Figure 1.9: Anytime Tree Search Inspirations from the 3 fundamental tree search algo-
rithms.

1.3.1 Limited Discrepancy Search (LDS)

Limited Discrepancy Search [HG95] aims to improve DFS behaviour by limiting the
work done on the first child, and allowing it to explore other children. Ideally a tree search
should explore a search tree as presented in Figure 1.10. Compared to DFS, it should not
wait to have totally depleted the sub-tree below the first explored child to explore others.

Given a maximum number of allowed discrepancies d, an iteration of LDS explores all
nodes that have at most d deviations from the best child (i.e. chosing a child not prefered
by the heuristic). Each node stores an allowed number of discrepancies. The root node
starts with d, its first best child also with d, its second best with d− 1 and so on. Nodes
with negative discrepancies are not considered and pruned. This allows to explore the
most promising branches of the tree while still giving a quick look at the other branches.

24

best child

second best

Figure 1.10: Ideal behaviour of a modified DFS. The first child is explored relatively
intensively, the second best a bit less, the third one even less. Possibly, some of the last
children are not explored.

It usually gives better solutions than DFS but also takes more time to deplete the search
tree. If d = 1, LDS behaves like a greedy algorithm. If d =∞, LDS behaves like a DFS.

Algorithm 1.4 shows the pseudo-code of an iterative LDS algorithm. A succession of
LDS iterations (starting at 1 (line 1), then 2, then 3, etc.) are performed. Each LDS
iteration initializes at each node an allowed discrepancy limit (line 4 for the root) and adds
to the stack all children that have their quality rank in the brotherhood smaller than the
number of allowed discrepancies of the current node (lines 6-15).
Algorithm 1.4: LDS algorithm
Input: root node

1 D ← 1
2 while stopping criterion not met do
3 root.D ← D
4 Candidates ← root
5 while Candidates 6= ∅ do
6 n← Candidates.pop()
7 i← 0
8 for c ∈ sortedChildren(n) do
9 c.D ← n.D − i

10 Candidates.push(c)
11 if c.D = 0 then
12 break
13 end
14 i← i+ 1

15 end
16 end
17 D ← D + 1

18 end

Figure 1.11 presents an example of a LDS iteration. We may note the tree shape simi-
larity from the ideal modified Behaviour in Figure 1.10.

25

2

2 1
0 -1

2 1 0 -1 1 0 -1 0 -1

Figure 1.11: Example of a LDS iteration where D = 2

1.3.2 Beam Search (BS)

In LDS, nodes are selected depending on a comparison with their siblings and not depending
on their absolute quality. We now present Beam Search (BS) that aims to explore a subset
of a tree that only keeps the best nodes at a given level. Beam Search has been used
successfully to solve many scheduling problems [OM88, SB99]. Beam Search is a tree
search algorithm that uses a parameter called the beam size (D). Beam Search behaves
like a truncated Breadth First Search (BrFS). It only considers the best D nodes on a given
level. The other nodes are discarded. Usually, we use the bound of a node to choose the
most promising nodes. It generalizes both a greedy algorithm (if D = 1) and a BrFS (if
D =∞).

0 0

1 2 2

0

1 2 2

5 6 54 3 3 4

0

1 2 2

5 6 54 3 3 4

0

1 2 2

5 6 54 3 3

7 65 55

4

0

1 2 2

5 6 54 3 3

7 65 55

4

Figure 1.12: Beam Search Iterations with a beam width D = 3

Figure 1.12 presents an example of beam search execution with a beam width D = 3.

26

Beam Search was originally proposed in [R+77] and used in speech recognition. It is an
incomplete (i.e. performing a partial tree exploration and can miss optimal solutions) tree
search parametrized by the beam width D. Thus, it is not an anytime algorithm. The
parameter D allows to control the quality of the solutions and the execution time. The
larger D is, the longer it will take to reach feasible solutions, and the better these solutions
will be.

Beam Search was later improved to become Complete Anytime Beam Search to make it
anytime. The idea is to perform a series of beam searches with a heuristic pruning rule that
weakens as the iterations go [Zha98]. They prune a node n′ if its bound exceeds by some
constant the bound of its parent n (i.e. n′ is pruned if f(n′) > f(n)+c with c increasing as
iterations go). In this variant the beam is not limited to a beam width D, thus, tuning the
parameter c is crucial. This variant is called Iterative-weakening Beam Search. Since many
algorithms were later designed to make the beam search complete5 (for instance Anytime
Column Search or Beam Stack Search both presented later in this thesis), thus also being
complete anytime beam searches, we refer this algorithm as an iterative beam search to
avoid potential confusions.

Another iterative beam-search variant increases the beam width at each restart. It
consists in performing a series of beam searches with increasing D. To the best of our
knowledge, such approaches have not been much studied in the literature. We may cite
its use on the car sequencing problem [GRB15] that consists of beam search runs of sizes
{5, 10, 25, 50, 100, 500, 1000, 1500,∞}. As the last iteration is not limited in width, this
iterative version is complete.

It is worth noticing that Iterative Beam Search may reopen many nodes. Another
possible beam increasing scheme could be to start by a beam of D = 1 (greedy algorithm).
Then when the current search finishes, multiply D by some constant (for instance, a
geometric growth of 2), thus running a beam of size 2, then 4, and so on. Such a scheme
appears to be efficient in practice (and guarantees that not too many nodes are re-opened).
To the best of our knowledge (and our surprise), such a variant does not seem to have been
studied before. In this thesis, we will use the terminology “iterative beam search” this
geometric-growth variant.

Algorithm 1.5 shows the pseudo-code of an iterative beam search. The algorithm runs
multiple beam searches starting with D = 1 (line 1) and increases the beam size (line
8) geometrically. Each run explores the tree with the given parameter D. At the end of
the time limit, we report the best solution found so far (line 10). In the pseudo-code, we
increase geometrically the beam size by 2. This parameter can be tuned, however, we did
not notice a significant variation in the performance while adjusting this parameter. This
parameter (that can be a real number) should be strictly larger than 1 (for the beam to
expand) and should not be too large, say less than 3 or 5 (otherwise, the beam grows too
fast and when time limit is reached, most of the computational time was possibly wasted
in the last incomplete beam, without providing any solution).

5A complete search can deplete the search tree and detect it did. Exact methods rely on complete
search.

27

Algorithm 1.5: Iterative Beam Search algorithm
Input: root node

1 D ← 1
2 while stopping criterion not met do
3 Candidates ← {root}
4 while Candidates 6= ∅ do
5 nextLevel ←

⋃
n∈Candidates children(n)

6 Candidates ← best D nodes among nextLevel
7 end
8 D ← D× 2
9 end

This geometric-growth variant appears to be a competitive algorithm on various prob-
lems in practice. Moreover, it appears that the average number of times a node is reopened
is constant (or close to it in most cases). If opening a node can be done efficiently (for
instance in O(1)), the iterative beam search can be more effective than a variant that stores
all visited nodes (the storage usually costs O(lnn)).

In Proposition 1.3.1, we present an argument why the iterative beam search opens a
(close to) constant amount of nodes. We assume that each tree level is large enough to
completely fill the largest beam width. Thus making this Proposition only valid on large
search trees (as the ones we consider in this thesis). We may also keep in mind that it
is an approximation as the very first tree levels usually contain less nodes than the beam
width. In practice, this effect is so small that we belive we can safely neglect it.

Proposition 1.3.1. An iterative beam search with a growth factor k > 1 opens at most
k
k−1 times more nodes than the total number of nodes it explores.

Proof. Given the n-th iteration of the iterative beam search, in the worst case, kn nodes
are opened at least once. The average number of openings of a given node is:∑n

i=0 k
i

kn
=

n∑
i=0

1

ki
≤
∞∑
i=0

(
1

k

)i
=

1

1− 1
k

=
k

k − 1

With k = 2 as described above, the iterative beam search opens at most twice the number
of nodes. With k = 3, it opens on average 1.5 times a node. With k = 1.5, it opens in
average 3 times a node. The parameter k allows controling the number of reopenings at
the expense of the ability to provide often solutions. Decreasing it would allow providing
more solutions at the expense of the number of node reopenings.

1.3.3 Weighted A* (WA*)

Weighted A* [Poh70] consists in modifying the A* guide as follows: f ′(n) = g(n) +w.h(n)
where w ≥ 1. It relaxes the optimality of the first solution by a factor of w > 1. The first
solution found by Weighted A* is at most w times worse than the optimal one. The bigger

28

(a) First iteration of Anytime
Column Search. It is similar to a
beam search of width D = 2 but
the nodes that could be heuristi-
cally pruned are stored in mem-
ory.

(b) Another beam search is
performed starting by the
higher remaining nodes in the
tree.

(c) Another beam search is
performed

Figure 1.13: Anytime Column Search iterations examples with D = 2.

w, the faster Weighted A* will find solutions. In the specific case of w = 1, we get the A*
algorithm. If w =∞ the first obtained solution is guided only by h(n). It can be seen as
minimizing the remaining work to do to obtain a solution.

1.3.4 Anytime Column Search (ACS)

Anytime Column Search [VGAC12] consists in extending a beam search by storing nodes
that would have been heuristically pruned6. It keeps a priority queue for each level in the
tree. It takes as a parameter an integer D (similar to the beam width). For each level,
it expands the best D open nodes and goes to the next level. Once all nodes on a given
level are explored, it starts again on level 0 and continues until the search is ended. This
algorithm aims to make a complete anytime search based on Beam Search.

Algorithm 1.6 presents the pseudo-code of the Anytime Column Search procedure.

Algorithm 1.6: Anytime Column Search Pseudo-code
1 levels ← [emptyPriorityQueue for each level l ∈ {0 . . .maxDepth}]
2 levels[0].add(root)
3 while some nodes are not explored do
4 for i ∈ {0 . . .maxDepth} do
5 expand the D best nodes at level i if they exist
6 insert every child at levels[i+ 1]
7 end
8 end

Figure 1.13 presents an example of an Anytime Column Search run with a width D = 2.

6We may note that a variant of Anytime Column Search was also independently discovered in Oper-
ations Research and is called Cyclic Best First Search [MSZ+17]. It corresponds to an Anytime Column
Search with D = 1.

29

1.3.5 Simplified Memory-bounded A* (SMA*)

Simplified Memory-bounded A* [Rus92] consists in exploring the search tree as A*, open-
ing the node n with the smallest lower bound. It adds to the fringe the child of n which
has the smallest f(n), and updates the lower bound of n if needed. If n does not have any
other child, n is discarded, otherwise, it is added again to the fringe with an updated lower
bound. Like beam search, it considers a maximum fringe sizeD. If the fringe contains more
than D nodes, SMA* discards the nodes which have the largest lower bound. As beam
search or LDS, SMA* generalizes the greedy algorithm if D = 1, and SMA* generalizes
A* if D =∞.

Figure 1.14 presents an example of SMA* iterations. Algorithm 1.7 presents the SMA*
pseudo-code.

Algorithm 1.7: Simplified Memory-bounded A* (SMA*)
1 fringe← {root}
2 while fringe 6= ∅ ∧ (time < time limit) do
3 n← extractBest(fringe)
4 fringe← fringe \ {n}
5 if hasChildren(n) then
6 fringe← fringe ∪ {nextChildren(n)}
7 fringe← fringe ∪ {n}
8 end
9 while |fringe| > D do

10 n← extractWorst(fringe)
11 fringe← fringe \ {n}
12 end
13 end

SMA* mainly differs from other algorithms presented so far by exploiting a new prim-
itive: extracting a child of a given node and possibly updating its bound (using the
HasNextChild and getNextChild procedures described in Chapter 1). During the
EURO/ROADEF 2018 challenge (presented in Chapter 3), we independently discovered
a variant of SMA* where we use the “classical” getChildren instead of the procedures
used by SMA*. We named it Memory Bounded A* (MBA*). In this thesis, we use the
terminology “MBA*” to designate the variant using getChildren and SMA* the variant
using HasNextChild and getNextChild.

1.3.6 Other tree search algorithms

In the previous section, we discussed some of the simpler and most efficient (in our
opinion) anytime tree search algorithms from AI/planning for combinatorial optimization.
However, there exists many more algorithms that could be applied to combinatorial opti-
mization problems. This section aims to quickly present them, their underlying ideas, and
strengths (without pretending to be exhaustive).

30

0 0

1 3 5

0

1 3 5

4 5 6

0

1 3 5

4 5 6

0

1 3 5

4 5 6 4 3 5

0

1 3 5

4 5 6 4 3 5

Figure 1.14: MBA*/SMA* iterations using standard children computation with width
D = 3

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search [CBSS08] obtained recent successes in game-playing [Cou06,
BPW+12, GS11, GKS+12]. It is a method that is guided by experiments (randomized
greedy starting at a given node). It usually uses the Upper Confidence-bound on Trees
(UCT) formula that allows us to make an exploration/exploitation trade-off where promis-
ing nodes are more attractive, but also, nodes that were little explored are attractive.
MCTS has many qualities (it is anytime since the experiments allow to find good solutions
fast, it is complete since it explores the tree in a best-first search manner, and, it does not
require any bound or guide). However, little success has been achieved in combinatorial
optimization. We believe that it is due to the fact that it is crucial to rely on a-priori
knowledge (i.e. guides and bounds) while solving a combinatorial optimization problem,
thus, MCTS would take a very long time to be as competitive as a simple greedy algo-
rithm on a hard combinatorial optimization problem. However, we advocate more work on
the integration of MCTS for combinatorial optimization by adding classical guides within
MCTS. We expect MCTS to be able to overcome some bias that a-priori knowledge may
have on some instances.

Iterative Sampling

[Lan92] consists in following random paths. It is similar to greedy random constructive
algorithms where only the random part is considered. Iterative Sampling is a special case
of a greedy random algorithm.

Greedy Best-First Search

[BG01] considers a priority queue ordering using h(n) as a selection criterion. It provides
good solutions very fast. It is a best-first algorithm that aims to provide a feasible solution
as fast as possible.

31

Improved Limited Discrepancy Search

[Kor96] improves the limited discrepancy search by only considering nodes that have exactly
k discrepancies and not ≤ discrepancies. It only explores leaf nodes that are at discrepancy
k and not all nodes below k. This makes LDS a valid exploration strategy as DFS. It
prunes nodes that have a remaining depth below their number of allowed discrepancies.
This modification allows LDS to be as efficient as DFS for proving optimality.

Recursive Best-First Search (RBFS)

[Kor93] improves the Best First algorithm by making it linearly bounded (O(d) where d is
the maximum depth of a node in the search tree). It adds to the nodes a bound fmin that
is the remaining value that remains to be explored below a node. After exploring a node,
it backtracks in the tree in order to reach the next node with fmin. Basically, it trades
computation time (by reopening ancestors of the last node explored) for memory (since a
linear number of nodes need to be stored). We may also cite some variants of RBFS like
weighted RBFS that improves WA* [HZ07].

Beam Stack Search

[ZH05] extends the beam search by allowing it to continue exploring the tree. It imple-
ments a data structure called a beam stack and allows to integrate beam search within an
exhaustive depth first search.

Beam Search Using Limited Discrepancy Backtracking (BULB)

[FK05] combines the Beam Search and the Limited Discrepancy Search to allow the beam
search to backtrack following an LDS scheme. It is in some sense very similar to Beam
Stack Search.

Anytime Pack Search (APS)

[VAC16] is a variant inspired from Anytime Column Search. Instead of selecting the
starting nodes at the same level, it allows the beam search to select nodes at different
levels at the same time according to their attractiveness.

Informed Backtracking Beam Search

[Wil10] modifies the Beam Search to make it complete. Instead of deleting nodes within
the beam, we run the beam search, either storing new nodes in the beam or storing them
in another data structure. When the beam finishes, it extracts the next most promising
node in the storage and runs a beam search again.

Restarting WA* (RWA*)

[RTR10] consists in restarting a weighted A* and decreasing the weight w.

32

Anytime Nonparametric A* (ANA*)

[VDBSHG11] uses a guide function defined as follows (the algorithm opens the node with
the maximal value first in this case):

f(n) =
G− g(n)

h(n)

where G is the value of the best solution found so far, initially fixed at a large value.
Opening a node using this criterion corresponds to the greediest possible way to improve
the current solution7.

Anytime Window A* (AWA*)

[ACK07] considers a window of size w. The exploration is done by opening only nodes at
depth w− l to w where l is the depth of the window. When all nodes within this range are
explored, the window slides down. The nodes not in the window range are frozen. When
the window reaches the bottom of the search tree, if it left no frozen nodes in the tree, the
algorithm is optimal and stops, otherwise, the search is done again with a larger window
(usually increased by 1). In the case where w = 1, it performs a DFS. When w is large,
the algorithm behaves like A*.

Tree search algorithms not included in this thesis

While some tree search techniques can be imported from AI/planning to Operations Re-
search, some are more specific to other problems types. In order to give a broad picture
of the tree search algorithms in AI/planning, we present some (very popular) of them and
why we do not discuss them in this thesis.

• Incremental heuristic search methods. For instance D* lite [KL02]. This kind of
method is applicable when one performs a large number of repeated searches that
are similar (re-planning methods mostly found in robotics). They take advantage
of reusing previous searches to find solutions faster than without this information.
Since we usually only perform one search in the paradigm presented in this thesis,
we chose to not consider incremental heuristic searches.

• Iterative Deepening search methods. For instance, the well-known Iterative Deepen-
ing Depth First Search [Kor85] and many of its variants inspired from the algorithms
presented in this chapter like Depth-Bounded Discrepancy Search [Wal97], Iterative
deepening A* [RM94]. It consists in a succession of depth bounded tree search al-
gorithms (where nodes below a given depth limit are pruned). If the search does
not produce any result, it is restarted with a deeper depth bound. This technique
has proven to be effective in puzzle-solving. Indeed, in such contexts, the goal is
to find a solution that uses the smallest possible number of steps. Thus, the best
goal nodes are (relatively) close to the root in a puzzle-solving context. In most
discrete optimization problems, goal nodes (feasible solutions) are mainly found at
the very bottom of the search tree. Thus making this kind of methods dominated by

7Source code for the original ANA* implementation can be found here: https://github.com/sbpl/
sbpl/blob/master/src/planners/ANAplanner.cpp.

33

https://github.com/sbpl/sbpl/blob/master/src/planners/ANAplanner.cpp
https://github.com/sbpl/sbpl/blob/master/src/planners/ANAplanner.cpp

a simple Depth First Search or Best First like strategy. For this reason, we did not
investigated these methods.

1.4 Constructive meta-heuristics seen as tree search

Even if the meta-heuristics literature mainly focuses on local-search-based or population-
based methods, some meta-heuristics (for instance, GRASP and ACO) have a constructive
nature, thus can be seen as anytime tree search algorithms. In this section, we present
both of them from a tree search perspective.

1.4.1 Greedy Random Adaptive Search Strategy (GRASP)

GRASP [MSS99] consists in a Greedy algorithm that performs a “weak” inference at each
node (hence the “adaptive” keyword indicating that the choices made at a given node
depend on the sequence of previous choices8). The algorithm is greedy randomized (i.e.
the next node is selected depending on its a-priori attractiveness and a random part).
Finally, GRASP algorithms usually perform a local search step in order to further improve
the obtained solutions9. For additional resources about GRASP, we invite the reader to
consult [FR02] and [RR16].

1.4.2 Ant Colony Optimization (ACO)

Ant Colony Optimization [DMC91] uses the biological metaphor of ants, seeking food.
Ants put pheromones along the path they take. The more food they bring, the more
pheromones they will put. At the beginning, ants move at random and as time goes, ants
only select the shortest path to food.

Some work has been done to consider ant colony optimization as tree search methods
[Blu05b, Man99]. Each ant can be seen as an agent that explores the tree in a greedy
manner. At each node, the ant is guided by two informations: ηij the guide indicating the
quality of the move i → j and τij the amount of pheromones between states i and j. As
search goes, τij is updated in order to explore solutions similar to the ones that achieved
the best performance and to avoid those that did not performed well. More formally, ACO
can be seen as an iterative greedy where an online learning is performed to better guide
the search.

In its simpler version, the ant chooses the decision i→ j using the following formula:

p(ij|i) =
ταij .η

β
ij∑

k∈N (i) τ
α
ik.η

β
ik

8For instance in the TSP, the greedy algorithm may not select vertices already visited, in this sense, it
is adaptive.

9If good local-search operators are available, we invite to combine anytime tree search algorithms
with local search as much as possible (since they are highly complementary). In order to maintain the
main message clear (i.e. anytime tree search can be enough to design state-of-the-art algorithms in some
situations) we purposefully do not discuss nor implement local search algorithms.

34

Where p(ij|i) indicates the probability of choosing j at node i. N (i) indicates the
possible children of node i and α, β are hyper-parameters of the algorithm. Those hyper-
parameters are used to adjust the exploitation of the a-priori guide or the online-learned
guide.

Each ant finding some solution updates the pheromones as follows:

τij = (1− ρ)τij + ρF (S)

where ρ is the learning rate. if ρ is close to 0, almost no learning will be done, and if ρ
is close to 1, pheromones will be reset at every iteration. F (S) is a function of a solution
and increases pheromone trails if S is a good solution.

Also, for each decision taken by every ant, a pheromone evaporation is performed as
follows:

τij = (1− φ)τij + φτ0ij

where φ is the evaporation parameter.

Conceptually, ant colony optimization can be seen as a memory management in the tree
search. Indeed, after an iteration, pheromones are updated and the next iteration will
explore parts of the tree where better solutions were found. This mechanism helps the tree
search to adapt its guide depending on where the best solutions were found. This principle
helps to overcome cases where the guide function does not provide good overall guidance.

In the classical Ant Colony Optimization algorithm, each ant is an agent that explores the
tree by doing a greedy random selection at each node. The probability of selecting a node
depends on the a-priori attractiveness and the pheromone trail. The pheromones can be
seen as a data structure that maps states and decisions to an online-learned attractiveness
represented as a real value. Usually, pheromones are put on decisions that are taken. For
instance, for TSP-like problems, pheromones are put on edges.

ACO variants

On its own, the original ACO algorithm (called Ant System (AS)) is not competitive with
other approaches. Some competitive variants were presented and aim to improve the Ant
System scheme.

Elitist AS: [DMC+96] consists in giving an additional weight of the best solution found
so far. In practice, we "add" the best-known solution to the pool of newly found
solutions.

Rank-based AS: [BHS97] sorts solutions according to their quality and only the w best
ants are able to deposit pheromones and the best ants deposit more pheromones
(w − r where r is the rank of the ant).

MMAS: MAX -MIN Ant System [SH98] considers a trail minimum (resp. maximum)
denoted τmin (resp. τmax). If τmin is strictly greater than 0, each solution part can
be chosen with a non-zero probability. At the beginning, each pheromone value is
assigned to τmax. Moreover, only the best ant is able to increase the pheromones

35

values. At each round, each pheromone value is decreased and only the one within
the best solutions may maintain the maximum level of pheromones.

ANTS: Anytime Non-deterministic Tree Search [Man99] obtained promising results on
the Quadratic Assignment Problem. It is the first algorithm, to the best of our
knowledge, to consider Ant Colony as a form of tree search. It performs bounding
prunings and reports an estimate of the quality of the solution found, to be used to
update pheromones.

ACS: Ant Colony System [DG97] introduces a parameter q0 which gives the proba-
bility for a given ant to move deterministically by choosing the next node j =
arg maxj∈Ni

(ταij .η
β
ij)

Ant-Q: [GD95] was intended to create a link between Ant Colony Optimization and
reinforcement learning. It was replaced by ACS since the pheromone updates rules
where computationally equivalent and simpler.

Beam-ACO: [Blu05b] replaces the greedy random behaviour of ants by a beam search.
Doing so, each ant reports many solutions instead of only one. This ACO variant
obtained excellent results on the open shop problem.

Hyper-Cube framework: [BD04] restricts the pheromones within a [0,1] range. This
algorithm allows to handle automatically the scaling of objective functions.

Moving beyond the metaphor

We propose to integrate Ant Colony Optimization within a more general tree search
framework. Some work has been done in order to examine the contribution of each part
of the ant colony optimization and try to explain its success [LISD16]. We study further
ant colony optimization, from a tree search point of view and try to combine tree search
techniques within the Ant Colony Optimization framework. As we will discuss, classical
ACO techniques can be integrated within a tree search framework. This new view may lead
to new ideas of hybridizations between ACO and AI-style tree search and Reinforcement
Learning.

Let us start by generalizing ACO. Algorithm 1.8 presents a generic ACO algorithm. It
starts by initializing an online-guide (for instance, all the pheromones set-up to 1). Then,
it runs several tree search algorithms partially guided by the online-guide (an ant iteration)
and regularly updates it to integrate new acquired knowledge into future search algorithms
(pheromone update).

Algorithm 1.8: Generic ACO algorithm

1 Initialize online-guide
2 while stopping criterion not reached do
3 Run nbAnts anytime non-deterministic tree search algorithms
4 Update online-guide
5 end

An Ant Colony Optimization is made of several parts:

36

• A pheromone (or policy) store that maintains the policy learned during the previous
search iterations. It associates decisions to an online-learned guide value (usually a
simple real number).

• A series of tree search algorithms partly guided by the pheromones. A randomized
greedy for classical ACO and a probabilistic beam search for Beam-ACO.

We now discuss possible modifications for each of this parts:

Anytime tree search algorithms The easier modification would be to update the any-
time tree-search algorithm (ant iteration). Adaptive greedy random tree search algorithms
are usually used in Ant Colony Optimization. It consists in a fast algorithm that diversifies
the search by randomization. However, it suffers from a lack of performance compared to
Beam Search like algorithms that are able to explore more promising solutions if their
width are sufficiently large. Beam-ACO [Blu05b] aims to replace the greedy randomized
algorithm by a beam search. This method was for several years the state of the art for
the open-shop problem. Using a Beam Search allows to intensify more the search space at
the price of less learning of good solution parts. As we consider the pheromones as a tree-
search component that builds upon some guide, it may help to improve other existing tree
search algorithms as well. For instance, one could think of a LDS-ACO or a MBA*-ACO.

Pheromones and decisions Originally, Ant colony Optimization was mostly used on
graphs, for instance in TSP-like problems. Decisions were edges of the graph. However,
we can think of several other decisions (and as we will see later, combining them within a
single algorithm). For instance, on a TSP-like problem, one can use as decisions, edges of
a graph but also city j being at position i, or city j being scheduled after city k.

Some work combined multiple pheromones structures within a single Ant Colony Opti-
mization algorithm and reported an efficient algorithm on a variant of the 2005 ROADEF
Challenge [Sol08]. More pheromone structures may lead to a better learning and may be
considered. However, one needs to set different weights on each pheromone structure if
some are more useful than others.

Links with Reinforcement Learning This online-learning view of ACO is very sim-
ilar to some Reinforcement Learning techniques. Indeed, most Reinforcement Learning
techniques consider the following hypothesis:

1. No supervisor: The agent only obtains rewards (positive if it did well, and negative
if it did bad)

2. Delayed feedback: Rewards are obtained after possibly many steps

3. Over sequential processes: There is a strong correlation between an action and the
previous action. The agent is influencing the data it gets through its actions.

A learning procedure in tree-search uses the same hypothesis. Indeed, rewards (solution
quality) are obtained only after a series of decisions (delayed feedback). Moreover, the
solution quality depends on, and is strongly correlated to the quality of each decision taken
during the tree-search iteration. Reinforcement Learning (RL) offers, to the best of our
knowledge, new ways to learn within the ACO framework. Indeed, most of RL algorithms

37

consider two numbers (the number of times the agent selected a decision, and the average
reward) whereas ACO only considers one (the pheromones). Pheromones values usually
use a real number to encode possibly many information like the probability to find an
improving solution, the number of times we used a given solution part without finding any
good solution, or solution parts not used frequently during the search. The nature-inspired
pheromone value serves all of these purposes at once but struggles to express every criterion
within a single real value. One possible variant could be to integrate some Reinforcement
Learning algorithm that uses a different information structure.

For instance, Upper Confidence Bound (UCB) considers the number of times a decision
has been taken and the (weighted) average it gave for each decision. Such a UCT-ACO
variant would be able to better control the compromise between exploration and exploita-
tion. For more details about Reinforcement Learning, we invite the reader to consider
[SB18].

A deterministic tree search for ACO? Non-deterministic tree search algorithms are
said to be efficient in order to build a large diversity in solutions. However, many tree
search algorithms, like LDS or Beam Search are known to be able to diversify the search
in a deterministic fashion (even being able to be complete). Combined with a UCB-based
pheromone system, it could be possible to consider a deterministic variant of Ant Colony
Optimization.

Chapter conclusion

In this chapter, we investigated several tree search proposed by multiple communities,
namely Operations Research exact methods with MIPs and CP, anytime tree search algo-
rithms from AI/planning and some meta-heuristics that can be seen as tree search algo-
rithms. As we have seen, there exist many algorithms. Also, many “tree search algorithmic
components” like the online-guide of Ant Colony Optimization, specific branch-and-bound
techniques like strong branching, dominance and symmetry breaking, or even the prob-
ing/diving strategies could be added to each tree search discussed above. This would make
a huge number of potential algorithms. The next chapter aims to provide a unified tree
search framework that can combine each tree search “building block” in order to obtain all
of these combinations. We present in the last chapters of this thesis some success stories
using this framework and this decomposed tree search vision and show that:

• Anytime tree search algorithms presented in this chapter can be competitive with
classical meta-heuristics on some problems.

• Decomposing tree search based on a set of building blocks allows to better analyze
the importance and synergy of each of them leading to a better overall understanding
of why such methods work (as proposed for other meta-heuristics [Sör15]).

38

2
Combinator-based Anytime Tree Search framework (CATS)

This chapter presents Combinator-based Anytime Tree Search framework (CATS). It en-
ables to rapidly prototype tree search and compare them in a fair environment. It also
shows good performance. Indeed, tree search algorithms presented in the next chapters use
CATS to implement their algorithms and are competitive compared to the state-of-the-
art. The CATS framework aims to generalize the ideas we designed with Florian Fontan
during the EURO/ROADEF2018-2019 challenge (presented in Chapter 3). We co-wrote
many combinators with Abdel-Malik Bouhassoun during his masters thesis.

Contents
2.1 Why a generic search framework? . 39

2.1.1 Related Work . 40

2.1.2 CATS vision . 41

2.2 Towards a generic tree search . 42

2.3 Generic tree search modifications – the combinators 42

2.3.1 Limited Discrepancy Combinator 44

2.3.2 Dominance Combinator . 44

2.3.3 Probings . 45

2.3.4 Statistics Combinator . 46

2.4 Implemented algorithms . 47

2.1 Why a generic search framework?

While we were designing and implementing methods to solve discrete optimization prob-
lems, it appeared clear that such a generic framework was required. This section aims to
provide a few insights on why an OR practitioner should care about developing and using
such a generic code.

Easier implementation The first (obvious) aim for a generic framework is to provide
an easier implementation. Indeed, many algorithms take days, sometimes weeks to be

39

implemented1. Re-using such algorithms is much more time-efficient and allows us to
perform more diverse trials while designing an optimization algorithm.

A better description of algorithms Designing a generic piece of code imposes to sep-
arate generic concepts from problem specific ones. As we developed the CATS framework
we noticed that our vocabulary changed. We started to express (and see) tree-search algo-
rithms as a combination of elementary concepts. For instance, “a forward search with prefix
bound using a beam search strategy for the SOP”2 instead of yet another “novel state-of-
the-art constructive meta-heuristic for the SOP”. Such precise terminology conveys much
more information about the algorithm.

A fair comparison of algorithms While comparing the impact of various search al-
gorithms, it is important to compare them in a fair context. Indeed, while comparing two
algorithmic components, if they rely on parts implemented differently, the performance
difference becomes less obvious. It is commonly admitted in AI/planning that many algo-
rithmic ideas are sometimes put aside because of a combination of programming “tricks”
often omitted in research papers. Such improvements can produce a 30 times improvement
in search codes [BHLR12]. Such a generic framework allows us to provide at the same time
a fair comparison and make these improvements widely accessible.

A simple implementation A generic framework also provides several (generic) exam-
ples of implementations for various search algorithms. Such may serve as a simple starting
point to build more intricate algorithms that have been extensively tested. We may ac-
knowledge the Coin-OR [Sal02], MiniSAT [SE05] and Mini CP [MSVH18] libraries/solvers
that aim to provide simple (yet efficient) optimization methods.

A perspective to automatic algorithm building Many works develop methods to
automatically tune algorithm hyper-parameters given a set of instances [HHLBS09]. Such
methods can also be applied to build algorithms that provided a standardized search frame-
work and many components (for instance, many bounds or guides). For instance, SATzilla
[XHHLB08] has been produced using many algorithmic parts from many SAT contest par-
ticipants. The resulting method outmatched other dedicated algorithms during a SAT
competition. One may hope, probably in a not-so-near future, to find collaborative state-
of-the-art algorithms, where researchers around the world contribute by providing compo-
nents to a standard algorithmic component library. Although we are far from here with
this framework, we believe that it is a small (yet indispensable) step towards this ideal.

2.1.1 Related Work

Many optimization frameworks and libraries exist (both for branch-and-bound or meta-
heuristics). However, to the best of our knowledge, no existing framework proposes anytime

1And we are not even talking about bugs that are likely to happen. In the best case, it would only
extend the development time if caught early. In the worst case, it can even divert a researcher from an
efficient method (it nearly happened to us both on the EURO/ROADEF challenge and for the SOP). We
discovered (too many) bugs in our specific implementations while making them generic.

2We are describing here the algorithm that enabled us to obtain new-best-so-far solutions on the
SOPLIB. See Chapter 4 for more details about it.

40

tree search. We still notice that some efforts have been done in this direction as a generic
branch-and-bound and recovering beam search have been implemented [Ter04]. We show
in the next chapters that this framework allows us to quickly design and prototype some
competitive ideas, and, sometimes improving state-of-the-art algorithms. This subsection
presents some frameworks that facilitate the prototyping of both exact-methods or meta-
heuristics.

Some generic exact-method frameworks exist. We may cite for instance Bob++ [DLCCR06]
to implement parallel algorithms built on classical MIP solvers, BapCod [VST05] to imple-
ment branch-and-price algorithms and more recently, Coluna.jl that aims to re-implement
BapCod in Julia. Many aim to provide a parallel branch-and-bound as PUBB (Paralleliza-
tion Utility for Branch-and-Bound algorithms)[SFIH98], ALPS [XRLS05], PICO [EPH01],
PPBB-lib [TP95], FATCOP [CFL01], ZRAM [Mar98], MW framework [GL06] to perform
branch-and-bounds on grids and Symphony [RG05]. While the search parallelization is
crucial and can prove to be a difficult task (which justifies the need of many frameworks
as listed above), there is, up to our knowledge no tree search framework that allows to
experiment various search strategies (for instance Beam Search, LDS, wA* etc.). CATS
framework aims to fill this gap.

Many meta-heuristic generic frameworks exist, we refer the reader to [PRCLF12]. Most
of them implement local-search based algorithms and evolutionary algorithms. Some of
them consider constructive algorithms (namely GRASP and ACO that are implemented in
FOM [PRG+03], OAT [B+07], MALLBA [AAB+02]). We may also note that ParadiseEO
[CMT04] is particularely used in meta-heuristics communities.

2.1.2 CATS vision

Our Combinator-based Anytime Tree Search Framework is built along with the following
principles:

Standardization As anytime tree search formalism for discrete optimization is rather
new, a lot of effort has been put to provide a simple and standard interface to build tree
search algorithms. We chose terminologies so that they can be understood by researchers
from meta-heuristics, AI/planning, and Operations Research while keeping ideas as simple
as possible.

Extensible The framework is built in such a way that it is easy to add a new search
tree or a new algorithm. Moreover, the combinator paradigm enables to even alter existing
algorithms easily.

Performance Originally, the framework is an attempt to reproduce and generalize the
code that enabled us to win the final phase EURO/ROADEF 2018 challenge. Thus, we
kept a similar architecture in order to enumerate solutions fast and possibly parallelize
algorithms on multiple CPUs. With simple enumeration schemes, the framework can open
more than 1 million nodes per second. Moreover, we provide some data structures (for
instance sets of integers) that are optimized for tree search. We aim to complete this list by
the integration of various data structures found in the AI/planning literature. For instance
we may cite weak-heapsort [ES02], QuickXsort [EW14], and various data structures found
in the heuristic search textbook [ES11].

41

2.2 Towards a generic tree search

We discuss in this section a “standard” usage of the CATS framework. It consists of using
pre-defined tree search strategies to solve a specific problem.

As discussed in Chapter 1, tree search components can be divided into two types of
components:

Problem-specific parts: bounds, fathomings, guides, branching schemes (i.e. how to
define the root node and children from a given node)

Generic parts: the search strategy (e.g. DFS, A* . . .), and also generic transformations
(for instance a new guide using the problem-specific one and a greedy run from the
node, or even generic dynamic-programming-like cuts)

The Combinator-based Anytime Tree Search framework is based on this principle. It
defines a generic class (abstract in C++, and can be seen as an interface in Java), called
Node, that acts as a contract between the problem specific parts and the generic parts.
Problem specific parts inherit from Node and implement several standardized methods
(getChildren, isGoal . . .). Generic parts rely on implemented Node methods to perform
computations. The more one implements Node methods, the more generic parts become
available.

For instance, if one only defines the root node (Node constructor) and how to generate
children, only uninformed search methods would become available (namely DFS, BrFS).
For instance, A* would not be available since it also requires some bounds. We discuss in
Chapter 4 a usage example of the CATS framework.

2.3 Generic tree search modifications – the combinators

While providing several tree search strategies, the CATS framework is also designed to
easily prototype tree search strategies and additional components (like generic dominance
or symmetry breaking strategies). Consider the following scenario: You design several tree
search algorithms (for instance DFS, LDS, Beam Search and several others). Then, you
notice that you want to record some information about the search like the number of opened
nodes, the average number of children per node, etc. The classical way to do so would be to
integrate within each tree search algorithm recordings and possibly a boolean to indicate
if we want to record information or not. This solution has some major drawbacks:

• It results in many code duplicates as it is likely that all these modifications would
be relatively similar from one tree search algorithm to another. Even when using a
finely designed inheriting scheme, there will still be some code duplicates making the
code maintenance difficult.

• When designing a new modification, it will require to alter many other tree search
algorithms (this amount of repetitive work would be more and more important as the
number of algorithms grow). The same goes when someone wants to design a new
tree search algorithm. It would require to integrate all already existing modifications
which can become a tedious task as the framework expands.

42

Tree Search

Node

Combinator

1

2 3

4

Figure 2.1: An example of how the combinator inserts between the tree search and another
node.

As many algorithms found in the literature rely on generic modifications of a given
generic scheme, it is important to provide them with a generic framework. We address the
code maintenance issue by introducing the concept of combinators (terminology inspired
from λ-calculus) that allows to define generic tree search modifications. A combinator (let
us call it X) takes as a parameter a Node object (it can be another combinator or a
problem specific Node), and mimics it while slightly altering its behavior. Consider the
following cases:

• In this example, we call N a simple node without any combinator.

• X(N) corresponds to N on which the combinator X is applied.

• Y (X(N)) corresponds to N where the combinators X and Y are applied successively.

Each combinator can alter every method of a tree search, including the constructor,
bounds, the way it generates children . . .

Figure 2.1 illustrates how the combinator acts as an interface between a problem specific
node and a generic tree search.

1. The tree search requests some node method.

2. The combinator “transfers” this request to the underlying node.

3. The underlying node responds.

4. The combinator responds to the tree search by possibly modifying the value the node
provided.

This scheme allows us to design modular and extensible search components. Many
combinators aim to be easily combined and offer a large degree of freedom. The next part
of this chapter presents the different combinators we designed and implemented within the
Combinator-based Anytime Tree Search framework. We believe that such an approach to
building optimization algorithms is promising, and, to the best of our knowledge, new.

43

2.3.1 Limited Discrepancy Combinator

Limited Discrepancy Search (LDS) [HG95] can be seen as a DFS in which some nodes
are fathomed if they deviate too much from the search guide. One can build an LDS-
combinator(N, d) where N is a node (combinator or not) and d the maximum number of
allowed discrepancies. It behaves as follows:

• Its constructor remembers the number of allowed discrepancies.

• While generating children, the combinator sorts children generated by N and wrap
them within an LDS-combinator with an updated d value depending on their ranks.
It cuts children with d < 0.

In the CATS framework, LDS is implemented by a DFS where an LDS-combinator is
applied at the root node.

2.3.2 Dominance Combinator

In tree search, we define as “prefix of node N ” the set of decisions taken from the root to
obtain the node N . We define as “suffix of node N ” the subtree rooted in N (set of nodes
below N).

We define as “equivalent”, two prefixes p1, p2 such that their suffixes are isomorphic
(same structure, same bounds for each node in the suffix . . .).

It can be seen as a form of node merging and the resulting branch-and-bound explores
a directed acyclic graph instead of a tree (it might be possible to find disjoint paths to go
from the root to N).

Dominance prunings are a way to eliminate symmetries and dominated partial-solutions.
It can be seen as a form of dynamic programming integrated within a tree search algorithm.
It stores all explored sub-states. Each node compares its prefix subset and last vertex to
existing entries in the database. If it is dominated, the node is pruned. This strategy has
been used in a large variety of methods. For instance, memorization in branch and bounds
[SJ15, STDC18].

Our implementation of generic dominances consists in altering the behavior of the branch
and bound as follows: Each time a node n is opened, the prefix of n is compared to what
exists in the database. If the subset of vertices spanned by n does not exist in the database
it is added to it, otherwise it is compared to the best equivalent prefix found so far. If the
subset has a prefix cost worse than the one in the database, the node n is pruned.

We implement the database using a hash table. In our numeric experiments, we notice
that a branch and bound using the prefix equivalence opens on average 4 to 5 times less
nodes on the largest instances than its equivalent version without prefix equivalence.

In some versions of the Prefix Equivalence (for instance the one found in history cuts
[SJ15] or in branch-and-bounds-and-remember [STDC18] called memoization), nodes are
pruned if their prefix matches an existing entry in the database even if their cost is equal.
Notice that we restart tree search algorithms (i.e. in Iterative Beam Search and Limited
Discrepancy), which perform heuristic prunings (they prune nodes to avoid saturating the

44

memory and to ensure reaching feasible solutions). To allow our algorithms to close an
instance (i.e. to prove the optimality of the best solution it found), we prune nodes only
if they are strictly dominated by the best equivalent recorded in the database. The reason
for doing so is that, although the value recorded in the database corresponds to a node that
has been already explored, this exploration might have been partial and we need to ensure
that the search does not perform any heuristic pruning to provide proof of optimality. For
instance, running a beam search with parameter d = 1 (similar to a greedy algorithm)
registers an entry in the database for the root node. At the second iteration, the entry
would be used and prune the root node as it would have the same prefix value. That
alleviates this scenario, we only prune a node if it is strictly dominated.

The Dominance-combinator(N , store) behaves as follows:

• Its constructor takes as a parameter a pointer (in C++ a reference) to a dominance-
database.

• Before generating children, the dominance-combinator checks in the database if there
exist an equivalent and better prefix. If there exists one, the current node is fathomed
(i.e. no child is generated). If the current prefix is strictly better, the combinator
updates the database to integrate the new better prefix.

Note: In this work, we assume that entries would not saturate the memory (which holds
only for small runtimes). As we discuss In Chapter 4, small runtimes are enough to obtain
new-best-known solution on the Sequential Ordering Problem (less than 600 seconds).
Research has been done to investigate this issue [STDC18].

2.3.3 Probings

In anytime tree search, guide functions appear to be a key component. In some cases, this
guide can be dramatically improved by executing a greedy algorithm and use the solution
it found. Such additional guidance is costly (as it runs a greedy at each node), however
many existing algorithms use it to improve the solutions. We may find for instance, the
Pilot method [VFD05] which is a meta-heuristics that uses probings (called pilot methods)
to guide the search. The Branch and Greed algorithm that performs a greedy algorithm
and uses probing as guidance [SC99], is similar to the Pilot method. We may also recall
that, various probings also appear in MIP-based branch-and-bounds or branch-and-price
methods [Ach09, SVP+19].

We define the Probing-Combinator(N , greedy) as follows:

• Its constructor takes as a parameter the underlying node N , and a search algorithm
(usually a simple greedy algorithm, however, we may use any other anytime tree
search as a probing strategy provided that it terminates relatively quickly)

Branch-and-Greed/pilot method extensions As Branch-and-Greed and the Pilot
method are commonly used and known to perform well in various situations, one can
propose several variants by altering the “pilot” method (i.e. the greedy algorithm ran at
each node). The CATS framework allows rapid and native prototyping of such methods by

45

0 1 2 3 4
time

110000

120000

130000

140000

ob
je

ct
iv

e

probing BS(2)
probing BS(3)
probing Greedy

Figure 2.2: Comparison between the branch and greed algorithm (greedy + probing using
a greedy algorithm) with (greedy + probing using a Beam Search of width 2 and 3)

using another tree search than the greedy. We tried such an algorithm and present quick
results on a hard instance of the SOP (more on this problem in Chapter 4) in Figure 2.2.
It appears that on this specific case, such variant of branch-and-greed using a beam search
of width 2 or 3 performs much better than the original branch-and-greed/pilot method.
Although this result is somewhat biased, as we prove in Chapter 4 that Beam Search
outperforms existing state-of-the-art for the SOPLIB, it exhibits an interesting question
about the efficiency of such variations on situations where classical pilot method/branch-
and-greed are used.

2.3.4 Statistics Combinator

The previous combinators altered the search behavior and were used to build other existing
(or sometimes new) algorithms. We now present a different combinator that aims to provide
useful information and feedback about the search without altering its behavior from a
search point of view. The Statistics Combinator does not perform any action other than
recording events. For instance, at each time getChildren is called, it updates the average
branching factor depending on the number of children generated. It records multiple search
events in a SearchStatsStore. Using a combinator for statistics recording allows us to
keep the manager and the tree search simpler. Also, it is easy to remove it when seeking
optimal performance (However, we advise to use it as it hardly costs 20% of performance
and yields useful insights).

In its current version, it records the following information:

• Number of expanded nodes (i.e. number of nodes whose children were generated).

• Number of generated nodes (i.e. number of nodes generated, expanded or not).

46

• Number of bounds and guides calls.

• Average number of children.

• Performance profiles (For instance as Figure 2.2). It registers the best solution known
at a given search time.

• Node opening events. While activating this option, the StatsCombinator registers
all node opening events. Such information can later be used to visualize the search
tree.

2.4 Implemented algorithms

So far, the following algorithms have been implemented:

• A* [HNR68]

• Ant Colony Optimization [DMC91] (AS, EAS, RAS, MMAS, ACS variants)

• Anytime Column Search [VGAC12]

• Anytime Pack Search [VAC16]

• Beam Search [OM88] / Iterative Beam Search (version presented in Chapter 1)

• BrFS

• Branch and Greed [SC99]

• BULB [FK05]

• DFS

• Greedy

• GreedyRandom (proportionnality rule)

• MBA* / Iterative MBA*

• LDS [HG95]

• wA* [Poh70]

47

3
A tree search for the EURO/ROADEF 2018 challenge

This chapter presents the first application of anytime tree search of this thesis. We applied
tree search algorithms on the EURO/ROADEF glass cutting challenge and the resulting
method was ranked first among 64 participants. We further generalized this approach to
a large variety of cutting & packing problems and obtained competitive results on most of
them. Sometimes even obtaining new best-so-far solutions. This chapter is a collaboration
with Florian Fontan. This chapter is inspired from an article about the algorithm we
designed for the challenge [LF20a].

Contents
3.1 Introduction . 50
3.2 Problem description . 50
3.3 Definitions and notations . 52
3.4 Branching scheme . 53

3.4.1 General scheme . 53
3.4.2 Pseudo-dominance rule . 55
3.4.3 Symmetry breaking strategy . 55

3.5 Tree search . 56
3.5.1 Memory Bounded A* (MBA*) 57
3.5.2 Guide functions . 57
3.5.3 DPA*: solving instances with strong precedence constraints . . 58
3.5.4 Global algorithm . 59

3.6 Numerical results . 59
3.6.1 Contribution of the components 59
3.6.2 DPA* . 62
3.6.3 Final results . 62

3.7 Conclusion and perspectives . 64

49

3.1 Introduction

We propose an anytime tree search with some simple bounds, pseudo-dominance properties,
and symmetry breaking rules. We introduce some new guidance strategy that allows the
algorithm to perform significantly better than if it was guided by a bound as in classical
branch-and-bound methods. We may note that this is unusual as almost all top-ranked
methods in previous editions of the challenge mainly rely on local search or mathematical
programming techniques. However, it is worth noticing that tree search algorithms are
popular in the Cutting & Packing literature. Thus, it is common to find various beam-
search techniques to solve this kind of problem [AHM09a, BS10, BCPT14]. Such remarks
make anytime tree search algorithms an apriori good bet, while aiming to provide an
efficient method for the EURO/ROADEF 2018 challenge, and more generally on Cutting
& Packing problems.

The search strategy can be roughly described as follows. It is a restarting strategy
that starts its first iteration by performing very aggressive heuristic prunings. At the sec-
ond iteration, it performs less aggressive heuristic prunings, taking more time than the
previous iteration, but finding better solutions. If the algorithm runs long enough, some
iteration may perform no heuristic pruning, thus the method will be able to guarantee
optimality. The resulting method obtained the best results compared to the other submit-
ted approaches during the final phase. We named it Memory Bounded A* as it performs
a series of A* with heuristic prunings which guarantee no-more than a given amount of
nodes active at the same time.

We also highlight a general methodology that can be applied to other complex problems
(and with other tree search algorithms). Indeed, the method can be divided into two parts:
the Branching Scheme, usually problem-specific, which is a definition of the implicit search
tree (i.e. root node, how to generate children of a given node, lower bounds, dominance
rules, etc.); and a strategy, usually generic, to explore the tree. This decomposition allows
rapid prototyping of both search tree definitions and tree search algorithms as many generic
parts can be reused within other algorithms. It also helps to draw insights about the
contribution of each component to the resulting search algorithm.

This chapter is structured as follows. In Section 3.2, we state the problem constraints
and objective. In Section 3.3, we give some notations and definitions. In Section 3.4, we
describe the branching scheme and in Section 3.5, the tree search algorithm we designed.
Finally, in Section 3.6, we show the numerical results we obtained.

3.2 Problem description

The 2018 ROADEF/EURO challenge was dedicated to an industrial cutting problem from
the French company Saint-Gobain. The challenge consists in packing rectangular glass
items into standardized bins of dimensions W ×H (6m × 3.21m).

The cutting plan needs to satisfy the following constraints:

• All items need to be produced

• Item rotation is allowed

• Cuts must be of guillotine type. Figure 3.1 illustrates two examples of non-guillotine
and guillotine patterns. Furthermore, the number of stages (levels of cuts) is lim-

50

1

2

3

4

5

(a) Non-guillotine pattern

1

2

3

4

5

(b) Guillotine pattern

Figure 3.1: Illustration of a non-guillotine pattern (a) and a guillotine one (b)

J1

J2
J3

J4

J5

J6

(a)

J1

J2

J3

J4

J5

J6

(b)

Figure 3.2: Only one 4-cut is allowed. Therefore, pattern (a) is feasible but pattern (b) is
not

ited to four, with only one 4-cut allowed on a sub-plate obtained after 3-cuts. This
configuration is close to classical three-staged non-exact guillotine patterns, but dif-
fers in that a sub-plate obtained after 3-cuts may contain two items as illustrated in
Figure 3.2.

• Items are subject to chain precedence constraints. The extraction order is as follows:
rightmost first level sub-plates first; within a first level sub-plate, bottommost sec-
ond level sub-plates first; within a second level sub-plate, rightmost items first; and
within a third level sub-plate, bottommost item first. Most instances have a dozen
chains, three instances have 2 chains and five instances are not subject to precedence
constraints.

• Bins contain defects (between 0 and 8 rectangles about a few centimeters high and
wide). Items must be defect-free and it is forbidden to cut through a defect. Even
if the bins have the same dimensions, the presence of defects makes the set of bins
heterogenous. It is important to note that bins must be used in the order they are
given.

• Depending on their level, sub-plates are subject to minimum and maximum size
constraints. The width of first level sub-plates must lie between w1

min = 100 and
w1
max = 3500, except for wastes. The height of second-level sub-plates must be at

least w2
min = 100, except for wastes. Finally, the width and the height of any waste

51

J1

J2

J3

Figure 3.3: Optimal solution of the case containing the following three items with the
chain precedence constraint J1 → J2 → J3. Additional waste must be added before the
first 1-cut. Otherwise either the waste area to the right of J1 or the waste area to the right
of J2 would violate the minimum waste constraint.

area must be at least wmin = 20. This last constraint has an unusual consequence as
illustrated in Figure 3.3.

The objective is to minimize the total waste area. It differs from classical Bin Packing
Problems in that the remaining part of the last bin is not counted as waste. This objective
is known in the packing literature as Bin Packing with Leftovers. It can be formulated as:

min nHW −Hw −
∑
i∈I

wihi

where n is the number of bins used; W and H are respectively the standardized width and
height of the bins; w is the position of the last 1-cut; I is the set of produced items; and
wi and hi are respectively the width and the height of item i ∈ I.

3.3 Definitions and notations

We use the following vocabulary: a k-cut is a cut performed in the k-th stage. Cuts
separate bins or sub-plates in k-th level sub-plates. For example, 1-cuts separate the bin
in several first level sub-plates. S denotes a solution or a node in the search tree.

We call the last first level sub-plate, the rightmost one containing an item; the last
second level sub-plate, the topmost one containing an item in the last first level sub-plate;
and the last third level sub-plate the rightmost one containing an item in the last second
level sub-plate. xprev1 (S) and xcurr1 (S) are the left and right coordinates of the last first
level sub-plate; yprev2 (S) and ycurr2 (S) are the bottom and top coordinates of the last second
level sub-plate; and xprev3 (S) and xcurr3 (S) are the left and right coordinates of the last third
level sub-plate. Figure 3.4 presents a usage example of these definitions. We define the
area and the waste of a solution S as follows:

To compute area(S) we distinguish two cases

• if S contains all items:
area(S) = xcurr1 (S)h

• and otherwise:

area(S) = A + xprev1 (S)h
+ (xcurr1 (S)− xprev1 (S))yprev2 (S)
+ (xcurr3 (S)− xprev1 (S))(ycurr2 (S)− yprev2 (S))

52

J1

J2

J3 J4

xcurr1 = xcurr3xprev1 xprev3

yprev2

ycurr2

Figure 3.4: Last bin of a solution which does not contain all items. The area is the whole
hatched part and the waste in the grey hatched part.

We compute the waste of a partial solution as follows:

waste(S) = area(S)− item_area(S)

with A the sum of the areas of all but the last bin, h the height of the last bin and
item_area(S) the sum of the area of the items of S. Area and waste are illustrated in
Figure 3.4.

3.4 Branching scheme

3.4.1 General scheme

Two kinds of packing strategies are used in the packing literature: item-based and block-
based. In item-based strategies, only one item is inserted at each step, whereas in block-
based strategies, multiple items are inserted. Although several researchers highlighted
the benefits of block-based approaches [BJ12, WTZL14, LMP17], we chose an item-based
strategy. Two reasons support this choice. First, the problem has more constraints than
classical packing problems from the literature. Thus, generating feasible solutions is al-
ready challenging and block-based approaches add even more complexity. Second, the
benefits of the block-based approaches might be compensated by a more powerful tree
search algorithm.

However, our strategy is not purely item-based: instead of packing one item at each
step, we pack the next third level sub-plate. This comes from the observation that because
only one 4-cut is allowed in a third level sub-plate, a third level sub-plate has only five
possible configurations; it may contain:

1. exactly one item, without waste

2. exactly one item with some waste above

3. exactly one item with some waste below

4. exactly two items, without waste

5. no item, only waste

These configurations are illustrated in Figure 3.5. The sub-plates containing J1 and J2
respectively follow configurations 1 and 2. These are the standard configurations. Placing

53

J1 J2

J3
J4

J5

J6

Figure 3.5: Illustration of third level sub-plate possible configurations. Black rectangles
are defects.

an item on top of the sub-plate as in configuration 3 may be necessary to reach an optimal
solution (by a combination of a defect and a min-waste constraint). Similarly, inserting
only waste (configuration 5) may also be necessary if the region contains a defect as the
sub-plate containing the second defect. We do not allow directly inserting only waste in a
region containing no defects. Such sub-plate may appear in a solution, as the third-level
sub-plate to the right of J4 and J5, but it is implicitly generated when J6 is inserted.
Finally, the sub-plate containing items J4 and J5 corresponds to configuration 4.

Third level sub-plates are inserted in the order they are extracted. In Figure 3.5,
this follows the numbering of the items. This ensures to never violate the precedence
constraints. All items are candidates if their insertion does not lead to a precedence
constraint violation.

Then, a third level sub-plate can be inserted at several depths:

• depth 0: in a new bin,

• depth 1: in a new first level sub-plate to the right of the current one,

• depth 2: in a new second-level sub-plate above the current one,

• depth 3: in the current second-level sub-plate already, to the right of the last third-
level sub-plate

To reduce the size of the tree, we apply some simple pruning rules:

• if a third-level sub-plate can be inserted in the current bin, we do not consider
insertions in a new bin; and if a third level sub-plate can be inserted in the current
first (resp. second) level sub-plate without increasing the position of its left 1-cut
(resp. top 2-cut), we do not consider insertions in a new first (resp. second) level
sub-plate;

• If the last insertion is an empty sub-plate at depth d, then the next insertion must
also happen at depth d;

• If the last insertion is a 2-item insertion at depth d 6= 3, then the next insertion must
be at depth 3.

With this branching scheme, item rotation and minimum and maximum distances
between cuts constraints are easy to take into account.

54

J1

J2

J3 J4

J5

J1

J2

Figure 3.6: Illustration of the front of two partial solutions

J1

J2 J3

(a)

J1

J2
J3

(b)

Figure 3.7: Solution (a) dominates solution (b)

3.4.2 Pseudo-dominance rule

In this section, we describe a more sophisticated heuristic dominance rule. For a (partial)
solution, we define its front as the polygonal chain

((xcurr1 , 0), (xcurr1 , yprev2), (xcurr3 , yprev2),

(xcurr3 , ycurr2), (xcurr1 , ycurr2), (xcurr1 , h))

Figure 3.6 shows two examples of solution fronts.
Then we say that solution S1 dominates solution S2 iff they contain the same items

and the front of S1 is before the front of S2. (see Figure 3.7).
If the number of possible subsets of items is small, then for a given subset, we can

memorize the best front currently seen during the search and prune any new dominated
node encountered. This situation occurs in instances with strong precedence constraints
(i.e. two chains) and this is the strategy of the DPA* algorithm presented afterward.
However, for most instances, the number of possible subsets is too large and we only use
the pseudo-dominance rule among the children of a node. To compensate, an additional
symmetry breaking strategy is introduced.

3.4.3 Symmetry breaking strategy

We designed the following symmetry breaking strategy: if they do not contain defects
and can be exchanged without violating the precedence constraints, a k-level sub-plate is
forbidden to contain an item with a smaller index than the previous k level sub-plate of
the same (k − 1)-level sub-plate.

Preliminary experiments showed that applying the strategy for k = 2 and k = 3 yield
the best results. The symmetry breaking strategy is illustrated in Figure 3.8.

55

J2

J1

J3

(a)

J2

J1

J3

(b)

J2

J1 J3

J4

J1, J2 → J3

(c)

Figure 3.8: Illustration of the symmetry breaking strategy: pattern (a) is forbidden because
the second-level sub-plates containing J1 and J2 can be exchanged without a feasibility
issue. However, pattern (b) is allowed because of the defect and pattern (c) is also al-
lowed because if the second-level sub-plates are exchanged, then the precedence constraint
between J2 and J3 is violated.

It should be noted that the branching scheme is not dominant, i.e. for some instances,
it may not contain an optimal solution. Likewise, the pseudo-dominance rule considers
that solution S1 dominates solution S2 whereas no optimal solution can be reached from
S1 but one can be from S2. More details about this are given by [Fon19].

3.5 Tree search

During our initial work on the challenge, we first explored the classical “Operations
Research” optimization algorithms (local-search, evolutionary algorithms and branch and
bounds). However, it seemed difficult for us to find efficient local-search or evolutionary
moves, while it felt relatively natural to design constructive methods. We implemented
several classical constructive algorithms: a greedy algorithm quickly providing solutions
but with limited quality; a Best First (A*) algorithm returning the “optimal” one (relatively
to the branching scheme) on small instances; and a Depth First struggling to improve the
greedy solution.

At each iteration, the best node is extracted from the fringe and its children are added
to the fringe. As written above, our implementation of A* can find the “optimal” solutions
for very small instances but fails to provide one in an acceptable time and runs out of
memory quickly. Therefore, we decided to heuristically prune nodes to bound the required
memory. This “heuristic” algorithm performed beyond expectations and provided excellent
solutions. However, it depended on the amount of memory allowed for the fringe. If this
parameter is too small, the search ends quickly and does not benefit from the remaining
available time. If too big, the search takes more time and does not provide any solution
within the time limit. To get rid of this parameter, we chose to use a restart strategy
where we geometrically increase the allowed memory at each restart. The new parameter
to calibrate becomes the growth factor, but we found that any value between 1.25 and 3
provided similar results. This simple approach provided good solutions.

Motivated by this simple but yet efficient algorithm, we investigated other anytime
tree search algorithms such as beam search [OM88] and beam stack search [ZH05]. We
implemented and compared them on the challenge problem. To our surprise, they did not
perform as well as the previously described approach. To the best of our knowledge, this
approach has not been used in the Operations Research literature before. We describe it

56

in more detail in the next section.

3.5.1 Memory Bounded A* (MBA*)

A* is known to minimize the cost estimate on nodes it opens. However, it suffers from
a large memory requirement since it has to store a large number of nodes in the fringe.
We propose a simple but yet powerful heuristic variant of A* that cuts less promising
nodes if the size of the fringe goes over a parameter D. We call this tree search algorithm
Memory Bounded A* (MBA*). If D = 1, it generalizes a greedy algorithm and if D =∞,
it generalizes A*.

We recall the MBA* pseudo-code in Algorithm 3.1. Only lines 8 to 11 are added
compared to the A* algorithm. MBA* starts with a fringe containing only the root node
(line 1). At each iteration, the best node is extracted from the queue (lines 3 and 4) and
its children are added to the queue (lines 5 to 7). If the size of the queue goes over D, the
worst nodes are discarded (lines 8 to 11).

Algorithm 3.1: Memory Bounded A* (MBA*)
1 fringe ← {root};
2 while fringe 6= ∅ and time < timelimit do
3 n← extractBest(fringe);
4 fringe← fringe \ {n};
5 forall v ∈ neighbours(n) do
6 fringe← fringe ∪ {v};
7 end
8 while |fringe| > D do
9 n← extractWorst(fringe);

10 fringe← fringe \ {n};
11 end
12 end

3.5.2 Guide functions

Tree search methods are dependent on well-crafted guide functions which define the mean-
ing of best and worst nodes. Using a lower bound is common in the tree search literature.
Indeed, if the objective is to prove optimality, using a lower bound as a guide function will
minimize the number of opened nodes. Therefore, we first tried this approach and used the
waste as a guide function. We noticed that the resulting solutions packed small items on
the first plates and big items on the last ones, thus generating little waste at the beginning
but a lot at the end. Globally: the solution quality was not satisfactory as illustrated in
Figure 3.9a.

Taking this into account, we designed new guides to balance the cost of inserting small
items at the beginning of the solutions:

waste percentage (= waste / (waste + item area)):
compared to waste only, the waste has less impact if the solution contains larger
items.

57

(a) waste only guide – first and last plate

(b) waste / average size guide – first and last plate

Figure 3.9: 3.9a shows a solution obtained using the waste as guide function. Notice that
at the beginning of the solution, small items are omnipresent whereas in later plates, only
large items are present, thus globally generating more waste. 3.9b shows the effect of the
guide biased by the item average size on a solution of the same instance. We observe that
small and large items are better mixed and significantly less waste is generated at the end
of the solution.

waste percentage / average surface of packed items:
this guide function directly adds a reward to solutions containing large items. Indeed,
the average surface of packed items directly favors partial solutions with big items
first.

The benefit of these guides is illustrated in Figure 3.9b.

3.5.3 DPA*: solving instances with strong precedence constraints

Three instances of the challenge contain only 2 precedence chains. If we denote by n1
(resp. n2) the length of the first (resp. second) chain, then the number of possible subsets
of items packed in a partial solution of the branching scheme becomes n1n2. Since the
number of items in an instance is less than 700 (this information was given in the challenge
description), it becomes possible to store the non-dominated fronts encountered for each
possible subset without overcoming the memory limitation, compare the front of each
opened node with the non-dominated fronts from all the previously encountered nodes and
prune the dominated ones.

Therefore, we developed a dedicated algorithm for these instances named Dynamic
Programming A* (DPA*). DPA* is an A* algorithm implementing the scheme described

58

in the previous paragraph. DPA* does not bound the size of the queue as MBA* does,
and uses the waste as a guide function. Therefore, if it terminates, it returns the “optimal”
solution (relatively to the branching scheme and the pseudo-dominance rule).

We may note that for a given subset of items, there could be an exponential number
of non-dominated fronts, which could degrade DPA* performances. This is at least not an
issue for the concerned instances from the challenge.

3.5.4 Global algorithm

For the competition, we distinguished the case where the instance has two chains or less.
In this case, we run DPA*.

If it has strictly more than two chains, we do not use DPA* since it would overcome
the memory limitation. Since the processor used to evaluate the participant submissions
had 4 physical cores, we run 4 threads, each one running a restarting MBA* with a given
growth factor and a given guide function. Each MBA* is initially executed with a fringe
maximal size of 2, and each time one terminates, it is restarted with a maximal fringe size
multiplied by its growth factor. If the growth factor is 2, the maximal size doubles at each
iteration. All the threads share the information of the best solution found. If one finds a
better solution, the others take advantage of it to perform more cuts and globally perform
better together than alone. The threads run the following algorithms:

• MBA*, waste percentage guide, growth factor 1.33

• MBA*, waste percentage guide, growth factor 1.5

• MBA*, waste percentage / average size guide, growth factor 1.33

• MBA*, waste percentage / average size guide, growth factor 1.5

3.6 Numerical results

In this section, we first evaluate the contribution of the components we described in the
previous sections in the main algorithm. Then, we show the benefits of using DPA* on
instances with only two precedence chains. Finally, we provide computational results with
the challenge setting. Instances generally have between 300 and 600 items and 10 to 15
chains. They are available online1.

3.6.1 Contribution of the components

In this section, computational experiments have been performed on a personal computer
with an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 16GB RAM.

We consider the 12 possible combinations of the components we designed, namely
MBA* to be compared with an Iterative Beam Search [Zha98]; with or without the sym-
metry breaking strategy; and with waste (w), waste percentage (p), or waste percent-
age/average size (a) guide. We run each pair of instance-algorithm for 100 seconds.

1https://www.roadef.org/challenge/2018/en/instances.php

59

https://www.roadef.org/challenge/2018/en/instances.php

Combination # best # only best

BS+no-sym+w 2 0
BS+no-sym+p 2 0
BS+no-sym+a 2 0
BS+sym+w 5 1
BS+sym+p 9 4
BS+sym+a 9 4
MBA*+no-sym+w 2 0
MBA*+no-sym+p 3 0
MBA*+no-sym+a 4 0
MBA*+sym+w 3 0
MBA*+sym+p 23 17
MBA*+sym+a 22 18

Table 3.1: Comparison over all possible algorithms using the proposed algorithmic com-
ponents. “# best” indicate the number of times the algorithm was able to find the best
solution on given instances compared to the 11 other algorithms. “# only best” indicates
the number of times the algorithm was the only one to find the best solution.

In Table 3.1, we show a summary of the performances of each variant. The goal is to
help us selecting the best combinations to use. MBA* with the symmetry breaking strat-
egy and guided by the waste percentage (MBA*+sym+p) and MBA* with the symmetry
breaking strategy and guided by the waste percentage / average size (MBA*+sym+a)
clearly outperform all other combinations. That is why these are the two combinations
that we use. Since the processor used to evaluate participant submissions has 4 physical
cores, we dedicate two threads for each combination with different growth factor (1.33 and
1.5) to add some robustness.

Instance MBA*
(4 threads, 3600s) DPA*

B5 88 590 815 72 155 615 (2.06s)
X8 24 875 331 22 265 601 (59.12s)

Table 3.2: DPA* vs MBA*

Table 3.3 presents an analysis of the contribution of each component individually. Each
column corresponds to the best result per instance obtained by a subset of algorithms that
uses a given component. For instance best IBS corresponds to a subset of algorithms using
Iterative Beam Search, thus excluding MBA* (6 algorithms). MBA* variants outperform
the Iterative Beam Search variants (producing 12% less waste). It finds 41/50 best solu-
tions and 36 best solutions that the Beam Search variants were not able to obtain. The
algorithms using the symmetry breaking strategy clearly produce better results than the
one without (13% less waste and 46 best solutions not attainable by the variants with-
out the symmetry breaking strategy) showing that integrating state-space reductions can
greatly benefit to anytime tree search algorithms and probably even to constructive meta-
heuristics. Finally, as expected, the waste (lower bound) guide provides the worst results

60

Instance best IBS best MBA* best no sym best with sym best w best p best a

A1 425 486 425 486 425 486 425 486 425 486 425 486 425 486
A2 10 514 609 9 676 799 10 537 079 9 676 799 10 659 059 10 418 309 9 676 799
A3 2 651 880 2 651 880 3 441 540 2 651 880 3 056 340 2 651 880 2 651 880
A4 3 242 520 3 220 050 3 306 720 3 220 050 3 505 740 3 220 050 3 306 720
A5 3 033 273 3 566 133 4 856 553 3 033 273 3 736 263 3 033 273 3 566 133
A6 3 225 930 3 572 610 3 652 860 3 225 930 3 800 520 3 225 930 3 460 260
A7 5 063 280 4 800 060 5 194 890 4 800 060 5 933 190 4 800 060 4 938 090
A8 9 187 874 10 077 044 12 218 114 9 187 874 12 568 004 10 077 044 9 187 874
A9 2 930 706 2 985 276 3 550 236 2 930 706 3 929 016 2 930 706 2 985 276
A10 4 097 221 4 084 381 5 272 081 4 084 381 4 797 001 4 084 381 4 122 901
A11 4 718 449 4 978 459 6 076 279 4 718 449 6 711 859 5 251 309 4 718 449
A12 2 050 084 2 245 894 2 342 194 2 050 084 2 050 084 2 104 654 2 194 534
A13 15 096 453 12 133 623 14 865 333 12 133 623 15 099 663 12 197 823 12 133 623
A14 14 363 778 12 097 518 14 793 918 12 097 518 14 363 778 12 097 518 13 490 658
A15 15 277 961 13 185 041 15 168 821 13 185 041 16 029 101 13 185 041 15 014 741
A16 3 380 333 3 380 333 3 380 333 3 380 333 3 380 333 3 380 333 3 380 333
A17 3 617 251 3 617 251 3 617 251 3 617 251 3 617 251 3 617 251 3 617 251
A18 5 898 468 5 535 738 5 763 648 5 535 738 7 737 798 5 596 728 5 535 738
A19 3 323 744 3 654 374 4 187 234 3 323 744 4 620 584 3 323 744 3 965 744
A20 1 467 925 1 467 925 1 493 605 1 467 925 1 467 925 1 467 925 1 467 925

B1 4 173 228 3 633 948 4 150 758 3 633 948 4 012 728 4 324 098 3 633 948
B2 15 715 685 15 359 375 18 466 655 15 359 375 20 155 115 15 359 375 15 715 685
B3 32 668 193 21 253 433 23 365 613 21 253 433 41 315 933 24 890 363 21 253 433
B4 8 885 365 8 862 895 11 238 295 8 862 895 9 222 415 8 862 895 8 920 675
B5 92 433 185 88 590 815 88 590 815 88 590 815 103 719 545 88 590 815 88 590 815
B6 13 371 637 13 480 777 15 653 947 13 371 637 17 509 327 14 113 147 13 371 637
B7 14 576 799 11 434 209 12 801 669 11 434 209 14 319 999 11 434 209 12 801 669
B8 24 490 999 19 512 289 24 121 849 19 512 289 24 490 999 19 512 289 20 048 359
B9 20 511 607 20 046 157 25 085 857 20 046 157 46 721 257 39 071 827 20 046 157
B10 28 012 013 27 344 333 29 225 393 27 344 333 35 815 523 31 055 093 27 344 333
B11 38 143 250 29 113 520 34 175 690 29 113 520 41 523 380 32 589 950 29 113 520
B12 18 122 077 16 086 937 19 929 307 16 086 937 18 122 077 16 086 937 16 314 847
B13 31 138 545 29 674 785 33 716 175 29 674 785 31 138 545 32 213 895 29 674 785
B14 10 482 820 10 043 050 11 619 160 10 043 050 12 046 090 10 434 670 10 043 050
B15 41 533 241 28 372 241 34 143 821 28 372 241 41 533 241 28 372 241 31 466 681

X1 21 022 877 17 299 277 17 970 167 17 299 277 29 911 367 17 803 247 17 299 277
X2 11 459 837 8 583 677 8 923 937 8 583 677 9 318 767 9 206 417 8 583 677
X3 9 424 756 8 712 136 9 842 056 8 712 136 9 578 836 8 712 136 8 927 206
X4 19 035 422 15 976 292 19 305 062 15 976 292 19 035 422 15 976 292 16 772 372
X5 5 383 037 5 620 577 7 029 767 5 383 037 6 728 027 5 623 787 5 383 037
X6 14 443 523 12 167 633 14 488 463 12 167 633 14 443 523 13 024 703 12 167 633
X7 30 327 120 26 170 170 27 146 010 26 170 170 31 328 640 29 161 890 26 170 170
X8 27 693 711 27 109 491 27 693 711 27 109 491 27 693 711 27 494 691 27 109 491
X9 33 431 655 23 599 425 33 919 575 23 599 425 33 370 665 23 599 425 26 716 335
X10 23 400 722 19 901 822 23 522 702 19 901 822 23 673 572 23 975 312 19 901 822
X11 14 349 972 14 247 252 16 102 632 14 247 252 14 349 972 14 247 252 14 921 352
X12 14 775 805 12 422 875 14 576 785 12 422 875 14 775 805 12 422 875 12 589 795
X13 19 208 322 14 624 442 18 900 162 14 624 442 20 007 612 16 271 172 14 624 442
X14 11 075 552 9 730 562 11 916 572 9 730 562 11 004 932 9 730 562 10 128 602
X15 16 301 394 13 540 794 17 261 184 13 540 794 16 461 894 13 990 194 13 540 794

total waste 779 159 574 679 871 064 779 027 964 676 914 654 870 817 914 725 241 204 693 016 014

nb best 14 41 4 50 5 27 28

nb only best 9 36 0 46 1 21 22

Table 3.3: Analysis of the contribution of each introduced algorithmic component

among the 3 considered guides (16% more waste than the waste percentage guide and 20%
more waste than the waste percentage / average size guide and only 5 best solutions on 50
instances). However, the waste percentage guide and the waste percentage / average size
guide provided similar results (with a slight advantage on the latest as it produces 5% less
waste and finds one best solution more). These results are interesting as they show that
both guides are complementary. Indeed, they produce 21 (resp. 22) best solutions where
they are the only one to obtain them. Thus it is worth using both.

61

3.6.2 DPA*

Table 3.2 shows the benefits of using DPA* on instances with only two precedence chains.
There is one such instance in each dataset, but the one in dataset A is trivial to solve,
therefore we only consider instances B5 and X8. Unlike MBA*, DPA* is not anytime and
terminates long before the 3600 seconds time limit. Furthermore, the solutions it returns
are significantly better and are even the best-known solutions for both instances.

3.6.3 Final results

Table 3.4 sums up the challenge final results. Computational experiments have been per-
formed on a computer with an Intel Core i7-4790 CPU @ 3.60 GHz × 8 processor with
31.3 Go of RAM. This configuration is similar to the one of the challenge. Since the chal-
lenge, a few adjustments have been made. Therefore, the results presented here slightly
differ from the results obtained during the final phase. Compared to the challenge version,
the current version performs better: the total waste on dataset B and X decreases from
493, 600, 549 for the challenge version to 469, 910, 749 for the current one. Columns Final
phase best 180s and Final phase best 3600s contain the best solutions found during the
final phase. Results annotated with a star indicate that this solution was found by our
algorithm during the final phase of the challenge. The Best known column contains the
best solution up to our knowledge. They may have been found during the development of
the algorithm, with execution times exceeding 3600 seconds or by other teams. Finally,
even if it is not indicated in the table, on most of the instances, if the algorithm is run
longer, for example, 2 hours, the solution will still be improved.

62

Instance Comments Final phase
best 180s

MBA*/DPA*
180s

Final phase
best 3600s

MBA*/DPA*
3600s Best known

A1 Trivial - 425 486 - 425 486 425 486
A2 No prec - 9 506 669 - 4 383 509 4 383 509
A3 - 2 651 880 - 2 651 880 2 651 880
A4 - 3 024 240 - 2 924 730 2 924 730
A5 - 2 924 730 - 3 283 653 3 017 223
A6 - 3 389 640 - 3 225 930 3 188 646
A7 - 4 703 760 - 4 334 610 3 920 520
A8 - 9 691 844 - 8 378 954 8 378 954
A9 - 2 664 276 - 2 664 276 2 664 276
A10 - 4 084 381 - 4 084 381 4 084 381
A11 - 4 660 669 - 4 622 149 4 358 929
A12 - 2 056 504 - 1 879 954 1 879 954
A13 - 10 226 883 - 9 440 433 9 331 293
A14 - 11 686 638 - 10 383 378 10 383 378
A15 - 12 918 611 - 11 108 171 10 828 901
A16 Trivial - 3 380 333 - 3 380 333 3 380 333
A17 2 chains - 3 617 251 - 3 617 251 3 617 251
A18 - 5 596 728 - 4 983 618 4 983 618
A19 - 3 654 374 - 3 323 744 3 323 744
A20 Trivial - 1 467 925 - 1 467 925 1 467 925

B1 No prec 3 232 698 3 765 558 *2 661 318 3 136 398 2 661 318
B2 *15 635 435 14 312 915 *13 674 125 13 398 065 11 931 095
B3 20 540 813 19 786 463 18 191 093 17 093 273 15 786 803
B4 *8 269 045 8 323 615 *8 269 045 7 973 725 7 315 675
B5 2 chains 72 155 615 72 155 615 72 155 615 72 155 615 72 155 615
B6 *12 116 527 12 488 887 *11 195 257 11 089 327 10 800 427
B7 No prec 9 601 299 9 177 579 *8 355 819 7 678 509 6 628 839
B8 *17 865 559 17 152 939 16 067 959 15 840 049 14 398 759
B9 18 502 147 19 969 117 17 484 577 17 474 947 16 495 897
B10 26 012 183 26 904 563 *21 951 533 23 065 403 21 951 533
B11 25 251 890 27 312 710 22 584 380 23 820 230 20 626 280
B12 *15 868 657 13 734 007 *13 958 707 13 120 897 12 514 207
B13 *28 349 055 27 360 375 *24 471 375 23 078 235 22 657 725
B14 *9 346 480 9 442 780 *8 656 330 8 377 060 8 023 960
B15 *27 794 441 24 568 391 *24 517 031 23 088 581 22 619 921

X1 *15 508 097 15 302 657 *14 127 797 14 127 797 13 720 127
X2 No prec 6 034 937 6 083 087 *5 434 667 4 879 337 4 795 877
X3 *8 285 206 7 649 626 *7 473 076 7 180 966 6 837 496
X4 12 182 072 15 488 372 11 405 252 13 366 562 11 405 252
X5 5 081 297 4 988 207 4 712 147 4 715 357 4 522 757
X6 12 565 673 11 031 293 *10 363 613 9 496 913 9 365 303
X7 *22 443 360 22 876 710 21 127 260 21 191 460 20 568 720
X8 2 chains *24 788 661 22 265 601 *24 788 661 22 265 601 22 265 601
X9 *22 251 225 22 312 215 20 167 935 20 479 305 20 039 535
X10 *20 110 472 18 778 322 *17 824 952 17 186 162 16 865 162
X11 *13 489 692 12 802 752 *12 417 552 11 676 042 11 011 572
X12 *11 963 845 12 358 675 *10 583 545 10 503 295 10 246 495
X13 15 950 172 14 345 172 *13 533 042 13 125 372 12 130 272
X14 *8 889 542 8 591 012 *8 013 212 7 644 062 7 422 572
X15 13 990 194 13 710 924 11 682 204 11 682 204 10 882 914

Table 3.4: Computational experiments comparing the proposed approach compared to
other contestants

63

3.7 Conclusion and perspectives

In this chapter, we presented a new anytime tree search algorithm called MBA* for the
2018 ROADEF/EURO challenge glass cutting problem. It performs successive iterations,
restarting when its heuristic search tree exploration is completed. During the first itera-
tions, it performs aggressive prunings and behaves like a greedy algorithm. As iterations
go, the algorithm performs fewer heuristic prunings, and thus gets access to better solu-
tions (at the cost of an increased computation time of each iteration). If enough time and
memory are available, the algorithm ends up performing an iteration with no heuristic
pruning, finding the best solution regarding the branching scheme.

We proposed two guides (waste percentage, and waste percentage / average item size).
These guides can find significantly better solutions than using a lower bound (the waste),
which is what is usually used in branch and bounds. We also presented a symmetry
breaking strategy and showed that it significantly improves the quality of the solutions
returned by the algorithm.

Also, we designed another algorithm, DPA*, for instances with only two precedence
chains. This algorithm returns the best-knowns solutions on these instances within short
times.

This result shows that anytime tree search algorithms from the AI/planning commu-
nities, and branch-and-bounds from the Operations Research community can benefit from
each other, leading to algorithms competitive with classical meta-heuristics (even on a
competitive industrial challenge).

Motivated by the success of MBA* on this glass cutting application, we adapted it
for classical guillotine cutting problems from the literature and showed that even on more
fundamental Cutting & Packing problems, it is still competitive with the other dedicated
algorithms from the literature [FL20b]. We investigated the following guillotine variants:
knapsack variants (maximizing the weighted sum of packed items), bin-packing variants
(minimizing the number of used jumbos) and strip-packing (given an original plate with
infinite length, minimize the last horizontal cut position). We investigated 9 datasets from
the literature and compared with many existing algorithms. In many situations, MBA*
proved to be competitive with dedicated methods, and, in some cases even could find better
solutions than state-of-the-art dedicated methods.

64

4
Tree search algorithms for the Sequential Ordering Problem

(SOP)

In this chapter, we study several generic tree search techniques applied to the Sequen-
tial Ordering Problem. This study enables us to propose a simple yet competitive tree
search. It consists of an iterative beam search that favors search over inference and inte-
grates prunings that are inspired by dynamic programming. The resulting method proves
optimality on half of the SOPLIB instances, 10 to 100 times faster than other existing
methods. Furthermore, it finds new best-known solutions on 6 among 7 open instances
of the benchmark in a small amount of time. These results highlight that there is a cat-
egory of problems (containing at least SOP) where an anytime tree search is extremely
efficient (compared to classical meta-heuristics) but was underestimated. Indeed, to the
best of our knowledge, it is the first pure constructive method proposed for the SOP. More-
over, despite its simplicity (approximately 250 C++ lines) it is competitive with state-of-
the-art more intricate approaches. The source code and solutions can be downloaded at
https://gitlab.com/librallu/cats-ts-sop.

This chapter is inspired by a paper we presented at ECAI2020 [LBCJ20] and is joint
work with Abdel-Malik Bouhassoun, Hadrien Cambazard and Vincent Jost.

Contents
4.1 Introduction . 66

4.1.1 SOP formal definition . 66
4.1.2 Literature review . 66

4.2 A search tree for the SOP . 68
4.2.1 Definition and computation of lower bounds 69
4.2.2 Prefix bound . 69
4.2.3 Ingoing/Outgoing bound . 69
4.2.4 Minimum spanning-tree bound 69

4.3 Dominance pruning . 70
4.4 Computational results . 71
4.5 Conclusions and future works . 72
4.6 A CATS-framework application example 76

4.6.1 Project Architecture . 76

65

https://gitlab.com/librallu/cats-ts-sop

4.6.2 Problem description – instances & solutions 76
4.6.3 Instance format . 77
4.6.4 Solution format . 77
4.6.5 Reading the instance & pre-processings 77
4.6.6 Search tree definition . 78
4.6.7 Wrapping everything together 81

4.1 Introduction

We consider a well-studied operations research problem with a published benchmark (the
SOP and the SOPLIB) where a large variety of intricate and advanced approaches have
been applied for more than 30 years [Esc88]. We show that a simple anytime tree search
algorithm is competitive against classical meta-heuristics. The resulting algorithm per-
formed beyond expectations. It finds better solutions than the currently best-known ones
on 6 among 7 open instances of the SOPLIB in a short amount of time (less than 600
seconds on a laptop computer compared to days for some other methods). Furthermore,
this algorithm reports optimality proofs on large (very constrained) instances about 10
to 100 times faster than the existing exact approaches. This method is so simple that
it could be considered as a baseline algorithm in AI/planning. Indeed, it is an iterative
beam search with a closed-list mechanism using no heuristic information other than the
prefix cost. This study shows that anytime tree search is a crucial component (at least
on the SOPLIB) and might deserve a greater consideration while designing optimization
algorithms.

This chapter is structured as follows: Section 4.1 presents the Sequential Ordering Prob-
lem and a quick survey of existing methods. Section 4.2 presents the SOP specific bounds
we use and compare (namely prefix bound, ingoing/outgoing bound, MST bound). Fi-
nally, Section 4.4 presents numerical results on the impact of the search strategy and a
comparison with the existing state-of-the-art algorithms.

4.1.1 SOP formal definition

Sequential Ordering Problem (SOP) is an Asymmetrical Traveling Salesman Problem with
precedence constraints. See Figure 4.4 for an illustrative example.

An instance of SOP consists of a directed graph G = (V,A), arc weights w : A→ R, a
set of precedence constraints C ⊆ V × V modeled as another graph, a start vertex s ∈ V ,
and a destination vertex t ∈ V . G is complete except for edges (u, v) where (v, u) ∈ C.

We search for a permutation of vertices that starts with s, ends with t, satisfies the
precedence constraints (i.e. for each precedence constraint (a, b) ∈ C, vertex a must be
visited before vertex b) and that minimizes the sum of weights the arcs joining the vertices
in the permutation.

4.1.2 Literature review

SOP was originally presented alongside some exact algorithms based on a mathematical
programming model [Esc88]. It has been extensively studied in the past 30 years, and

66

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

(a) graph representation – arc weights

a b

c

d

e

(b) graph representation – precedence con-
straints

Figure 4.1: Example of a SOP instance with 5 vertices and 1 precedence constraint where
a is the start vertex and e the end vertex. Permutation a, d, c, b, e is a feasible (since d is
visited before c) and has cost 2 + 2 + 4 + 2 = 10. Permutations a, b, c, d, e and a, c, b, d, e
are not feasible. Permutation a, b, d, c, e is optimal with cost 1 + 1 + 2 + 2 = 6.

many applications and resolution methods have been considered. SOP generalizes several
combinatorial problems: Relaxing the precedence constraints gives the Asymmetric Travel-
ing Salesman Problem (ATSP) [LO95]. If, moreover, arc lengths are symmetric, we get the
symmetric TSP. We present in this section the most common applications and algorithms
for SOP.

SOP arises in many industrial applications. On stacker crane trajectory optimization
[Asc96], one has to fulfill transportation jobs as fast as possible. This problem can be
modeled using SOP where vertices represent jobs and arc weights represent the time needed
to go from a job to another. In automotive paint shops [SGV04] where the goal is to
minimize the set-up cost of a paint job (flushing old paint, retrieving new color etc.). Also,
since car lanes relative order cannot be changed during retrieval, precedence constraints
need to be taken into account. SOP also occurs in the switching energy minimization of
compilers [SJ15]. While compiling a program, the compiler has to visit operations so that
the switching cost is minimized. Since some operations require other operations to be done
before starting, precedence constraints also need to be considered. One can also note the
use of SOP in freight transportation [EGM94], flexible manufacturing systems [Asc96], and
helicopter visiting [FTP92].

Many exact approaches have been proposed to solve the Sequential Ordering Problem.
As we discuss in this section, most of the literature focuses on finding strong lower bounds.
Earlier approaches to SOP include cutting planes [AEGS93] and Lagrangian relax and cut
algorithm [EGM94]. A mathematical programming model solved with a branch-and-bound
in which the branching is performed in order to decompose the problem as much as possible
was also studied [MMDC+12]. The uncapacitated m-PDTSP, which is a generalization of
SOP, led to competitive results on SOP using a branch-and-cut algorithm combined with
a generalized variable neighborhood search [GR15]. Also, decision diagrams made a huge
impact by generating automatically good quality bounds [CvH13, Her04]. In 2015, a
dedicated branch-and-bound has been proposed [SJ15], it combines quick and elementary
bounds (prefix, ingoing/outgoing degrees, and MST) with a technique inspired from TSP

67

dynamic programming called History Cuts that allows pruning dominated partial solutions.
Despite the simplicity of its bounds, the later method obtained excellent numerical results.
It, therefore, inspired us to study further the impact of the branch-and-bound components.
This algorithm has been further improved by the integration of a custom assignment bound
and a local-search at each node of the search tree [JSP+17].

In meta-heuristics, numerous works focus on a local-search move called SOP-3-exchange
and combine it with various search algorithms. It is a 3-OPT move optimized to take into
account precedence constraints and asymmetrical arc weights. This SOP-3-exchange proce-
dure is presented alongside an Ant Colony Optimization algorithm [GD97]. It has also been
used within a particle swarm optimization algorithm [AMPG11], by a hybrid genetic algo-
rithm using a new crossover operator referred to as Voronoi Quantized Crossover [SM03],
as well as a bee colony optimization [WWKT14], and a parallel roll-out algorithm [GM03].

Since the hybrid ant colony algorithm HAS-SOP [GD97] obtained excellent numerical
results, a considerable amount of work has been done to improve it. First, by the integration
of a better data structure called the don’t push stack [GMW12]. HAS-SOP was again
improved by the integration of a Simulated Annealing scheme [Ski17]. Recently, the LKH
heuristic was improved to be able to solve SOP instances [Hel17]. These two last methods
obtained the best solutions on large instances of the SOPLIB.

According to the literature review on the Sequential Ordering Problem, the existing
works seem to consider as a working hypothesis that local-search is a key feature to obtain
state-of-the-art solutions on large instances and that strong lower bounds are the key
components of branch-and-bound algorithms. Moreover, since 2006, every work based
on meta-heuristics use the SOPLIB as a standard benchmark, as we do here [AMPG11,
CvH13, GMW12, GR15, GM03, Hel17, JSP+17, MMDC+12, SJ15, Ski17, WWKT14]. In
the next sections of this paper, we investigate different branch-and-bound components and
show that specific combinations can build very efficient methods that provide new best-
known solutions on large and constrained SOPLIB instances and prove optimality on half
of them (which is not possible with most local-search strategies).

4.2 A search tree for the SOP

When designing a tree search algorithm, it is common to divide it into two parts. The
search tree (problem-specific part, i.e. how to branch, bounds, pruning, etc.) and the
generic parts (a search strategy, such as DFS, Beam Search etc. or generic prunings, in
our case domination prunings). This section presents the problem specific parts and the
next section presents the generic parts.

During the implementation of the search trees, we focused on fast bounds (O(1) for
ingoing/outgoing bounds and O(|E|) for the Minimum Spanning Tree bound). The key
idea is to favor search over bounding/filtering. In the specific case of the SOPLIB, we show
that using stronger bounds dramatically affects the performance of the method, even if the
resulting branch-and-bound explores a smaller tree and has better guidance.

We branch as follows: The root node contains the start vertex s. Each child of a given
node corresponds to each possible next vertex to be visited (vertices not already added to
the prefix and whose predecessors have all been added already to the prefix).

68

4.2.1 Definition and computation of lower bounds

We define our bounds as it is usually done in AI Planning. For a given node n we define
the lower bound as follows: f(n) = g(n) + h(n)

where:

• g(n) is the prefix bound (i.e. cost of arcs between already selected vertices)

• h(n) is the suffix bound (i.e. an optimistic estimate of the remaining work to be
done). The three bounds we develop in this section only differ on this criterion.

4.2.2 Prefix bound

The prefix bound consists in setting f(n) = g(n) for any node of the search tree. That is
h(n) = 0.

This bound (i.e. g(n)) can be computed in O(1) along a branch of the search tree,
simply by accessing, when adding vertex b to a prefix that ended with vertex a, the cost
wab from the input. Surprisingly, our computational experiments show that the bound
guide, is the best among the three bounds considered.

4.2.3 Ingoing/Outgoing bound

For the Ingoing/Outgoing (or I/O) bound, we keep the prefix bound and add a lower bound
on the suffix.

Consider a node n of the search tree. Let prefix(n) = v1 . . . vk−1 be an ordered set
of already visited vertices excluding the last added vertex vk, and suffix(n) the set of
remaining vertices to add. We remind that s denotes the start vertex and t the end vertex
of the SOP instance.

We design the optimistic estimate of remaining cost h(n) = max(hin(n), hout(n)) where:

hin(n) =
∑

v∈suffix(n)

min
u∈V,uv∈A

wuv

hout(n) =
∑

u∈(suffix(n)∪{vk})\{t}

min
v∈V,uv∈A

wuv

This bound can be computed in O(1) along a branch of the search tree. Indeed, one
can precompute the sum of ingoing arcs at the root node. When adding a vertex v to the
prefix, this sum can be updated in constant time by removing the minimum ingoing arc
for v. The same algorithm can be applied for outgoing arcs. Note that arcs considered in
this bound can have one of their endpoints in the prefix. One can consider implementing
a stronger bound that removes such arcs to improve its value.

4.2.4 Minimum spanning-tree bound

For the MST bound, we keep the prefix bound and add a lower bound on the suffix.
Let wab = +∞ if b must be visited before a. Define w′ab = min(wab, wba). The suffix

cost h(n) is then computed using Prim’s algorithm on the graph spanned by the vertices
not yet visited, with edge costs w′.

69

A key analysis, on the instances used for this paper, revealed that it would be pointless
to try to speed-up the implementation of the MST bound, because, even if it could be
computed as fast as the prefix bound, it would not lead to better solutions than the
algorithms using this weaker bound. We ran an algorithm with MST within the time
limit. Then ran algorithms with cheaper bounds restricting the number of nodes to the
number opened by the MST based algorithm.

4.3 Dominance pruning

Dominance prunings are a way to eliminate symmetries and dominated partial-solutions.
It can be seen as a form of dynamic programming integrated within a tree search algorithm.
It stores all explored sub-states. Each node compares its prefix subset and last vertex to
existing entries in the database. If it is dominated, the node is pruned. This strategy has
been used in a large variety of methods. For instance, memorization in branch-and-bounds
([SJ15, STDC18]).

A dominance pruning for the Sequential Ordering Problem can be defined as follows
(inspired from TSP dynamic programming [CGP12], history cuts [SJ15] and the call-based
dynamic programming [BJJ14]):

Two solution prefixes n1, n2 are called equivalent if they cover the same subset S ⊆ V
of vertices and end with the same last vertex v. If the prefix cost g(n1) (i.e. the sum of
selected arcs between vertices from S ∪ {v}) is (strictly) greater than g(n2), then n1 is
(strictly) dominated by n2 and thus can be pruned.

In other words, the dominance prunings can be seen as a form of dynamic programming
where the formulation can be described as follows where pred(S, j) indicates that j is not
a predecessor of any vertex in S:

f∗(S, i) = minj∈S∧pred(S,j)(f∗(S \ {j}, j) + wji)

Our implementation of dominance prunings consists in altering the behavior of the
branch-and-bound as follows: Each time a node n is opened, the prefix of n is compared
to what exists in the database. If the subset of vertices spanned by n does not exist in
the database it is added to it, otherwise, it is compared to the best equivalent prefix found
so far. If the subset has a prefix cost worst than the one in the database, the node n is
pruned.

We implement the database using a hash table. In our numeric experiments, we notice
that a branch-and-bound using the prefix equivalence opens on average 4 to 5 times fewer
nodes than its equivalent version without prefix equivalence.

In some versions of the Prefix Equivalence (for instance the one found in history cuts
[SJ15]), nodes are pruned if their prefix matches an existing entry in the database even
if their cost is equal. Notice that we restart tree search algorithms (i.e. Iterative Beam
Search and Limited Discrepancy), which perform heuristic prunings (they prune nodes
to avoid saturating the memory and to ensure reaching feasible solutions). To allow our
algorithms to close an instance (i.e. to prove the optimality of the best solution it found),

70

we prune nodes only if they are strictly dominated by the best equivalent recorded in the
database. The reason for doing so is that, although the value recorded in the database
corresponds to a node that has been already explored, this exploration might have been
partial and we need to ensure that the search does not perform any heuristic pruning to
provide proof of optimality.

4.4 Computational results

Results were obtained from a Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 8GB RAM.
We run each pair of instance-algorithm for 600 seconds. Instances come from the SOPLIB
benchmark available here

http://www.idsia.ch/~roberto/SOPLIB06.zip
The Instances are randomly generated and their names contain 3 numbers indicating:

the number of nodes (from 200 to 700), the range of the cost drawn uniformly (either
between 0 and 100 or between 0 and 1000), and the percentage of precedence constraints.
Notice that the Instance R.200.100.60 is ill-defined as its costs are drawn between 0 and
1000.

Best known bounds and solutions are an aggregation of results coming from [Ski17,
GR15, MMDC+12, JSP+17, Hel17]. Note that the Lin Kernighan Helsgaun 3 Algorithm
[Hel17] was run on each instance for 100.000 seconds. The Enhanced Ant Colony Sys-
tem with Simulated Annealing [Ski17] was run 30 times per instance for 600 seconds so
18.000 seconds per instance. The time limit of 600s used in the present paper is therefore
considerably smaller.

Performance of tree search components We ran 18 different tree search algorithms
(DFS, LDS and Beam Search) with and without Prefix equivalence using the prefix, Ingo-
ing/Outgoing degrees or the MST bound for 600 seconds. It turns out that there are two
clear winners out of these methods (Beam Search + Prefix Equivalence + Prefix or Ingo-
ing/Outgoing bound). Since the results of the two best methods are very similar, we choose
to emphasize the simplest one (i.e. Beam Search + Prefix Equivalence + Prefix bound).
We show in Table 4.1 that any deviation of search strategy, prunings or bounds lead to a
performance drop (except for the Beam Search + Prefix Equivalence + Ingoing/Outgoing
degree bound). For the sake of clarity, we only show deviations of BS+PE+P and not the
18 algorithms.

Discussion As expected, tree-search performs better (even more with prefix-equivalence
prunings) on most-constrained instances (proving optimality on the 60% and 30% and
competitive results on the 15%) while obtaining poor results on loosely constrained ones
(1%)

The minimum-spanning-tree-based tree search algorithms open fewer nodes (1.000 to
10.000 times less than the ingoing/outgoing bound). As a result, fewer solutions are
found (sometimes none within the time limit) and are less efficient. It appears that on
medium-size instances, the MST bound does not provide a significant guide improvement
(and thus harms performance since it is more expensive to compute than the Prefix or
Ingoing/Outgoing bound). One might wonder whether a possible incremental evaluation
of the MST bound, that is, computation of it along a branch of the search tree taking

71

http://www.idsia.ch/~roberto/SOPLIB06.zip

advantage of the similarity between the MST for a node and the MST for one of its
child would make a difference. For the benchmark we used, it would make absolutely no
difference. In the best scenario, we would end up with a third algorithm equivalent to our
other two champions. We do not report numerical results on this issue here, but restricting
the algorithms by the number of nodes, and not by the time limit, we observed that the
MST bound did not improve the results overall.

We remark that the search strategy also plays an important role while finding good
solutions or closing instances within the time limit. Globally, the Beam Search strategy
finds better solutions than LDS that finds better solutions than DFS. Although DFS can
find the optimal solution and to prove optimality on some instances, it doesn’t match the
quality of the solutions of either Beam Search or LDS. The main advantage of DFS is
that it does not reopen any node, its main drawback is that it struggles to provide good
quality solutions fast. In comparison, Beam Search reopens nodes, but by finding very
good solutions fast, it can prune more nodes and thus, close more instances. In this study,
the beam search strategy (using prefix equivalence) appears to be the best, in terms of
both proving optimality and finding the best solutions within the time limit.

We compare the Beam Search + Prefix Equivalence + Prefix or Ingoing/Outgoing bound
against the best solutions reported in the literature by other state-of-the-art algorithms.
Our method finds new best-known solutions on 6 among 7 open instances of the SOPLIB
in a much shorter time than the other algorithms. It also proves optimality quickly on
all instances with 30 and 60 percent precedence (about 10 to 100 times faster than the
DFS+prefix equivalence+stronger bounds+local-search [JSP+17]). We remark that the
proposed method fails to provide good solutions for 1% precedence due to the poor quality
of bounds on these instances that are close to ATSP.

Finally, we may study the performance profiles of all the algorithms we presented and
compare them to the state-of-the-art. We notice that even if DFS is an anytime algorithm
and improves regularly the quality of its solutions found over time, it is largely dominated
by the other methods and struggle to compete with other methods. LDS aims to improve
the anytime behavior of DFS, and indeed, does. However, it is still not enough to compete
with the state-of-the-art. Finally, Beam Search can compete. Its version without Prefix
Equivalence dominances obtains similar quality of solutions over time than EACS+SA,
and its version with dominances even improves the best-known solution in the literature
in approximately 50 seconds. We notice that in all algorithms, the dominances allow
performing a little bit better.

4.5 Conclusions and future works

In this chapter, we discussed the importance of considering anytime tree search while
designing algorithms for large-scale instances. In this (striking) example, we showed that
even a simple tree-search algorithm (that could also be considered as a baseline algorithm
due to its simplicity) could outperform state-of-the-art operations research intricate and
advanced meta-heuristics on a well-studied benchmark.

The search algorithms usually considered in operations research (namely DFS and LDS)
proved to be dominated by the beam search on the SOPLIB. Beam search outperformed

72

10−2 10−1 100 101 102

time

105

ob
je

ct
iv

e

greedy

best-so-far

BS

BS+PE

DFS

DFS+PE

EACS+SA

LDS

LDS+PE

Figure 4.2: Performance profile comparison of the current state of the art (EACS+SA)
with the different algorithms developed in this chapter. The solution obtained by a nearest-
neighbour greedy and the best-so-far are showed to better indicate the contribution of each
component.

DFS by proving optimality on 25 instances (DFS proved optimality only on 17 instances)
in less than 600 seconds. It outperformed existing algorithms in finding new best-known
solutions on 6 among 7 open instances in a short amount of time. We also demonstrated
the importance of deconstructing optimization algorithms (in this case a tree-search) and
analyze the contribution of each separate building block. Indeed, neither beam search
alone, nor the prefix equivalence prunings with DFS/LDS alone were able to outperform
state-of-the-art , but together, they did.

While aiming to implement an efficient all-purpose SOP solver, one (in our opinion)
should integrate a Beam Search and prefix equivalence as it proves itself to be a very
efficient and complementary approach on large and constrained instances. However, we
note that such tree-search methods are not as efficient on loosely constrained instances
as LP-based branch-and-bounds or local-search, thus the importance of hybridizing them
together in such all-purpose solver.

The existing SOPLIB contains mostly very constrained instances (at the exception
of the 1% precedencies). It was probably designed in such a way that local-search and
LP-based approaches struggle to find good solutions. As tree-search outperforms these
approaches on 15% instances and is outperformed on 1% instances, it is an interesting
question to update the benchmark with intermediate densities (5%, 10% etc.) as they

73

would probably be harder considering both classes of algorithms.
This paper only considers the Sequential Ordering Problem. However, a similar de-

composition methodology of complicated algorithms into simple building blocks and the
assessment of their contributions, computational costs, and ideally synergies, can be applied
to other combinatorial optimization problems. For instance, anytime tree search has been
successfully applied on various hard combinatorial optimization problems such as “simple
assembly line balancing problem” [Blu08], “Longest Palindromic Common Sub-sequence”
[DRB19]. We believe that similar conclusions (anytime tree-search are underestimated by
operations research practitioners) can be drawn on several other problems.

Moreover, we limited this study to DFS, LDS and Beam Search as search strategies.
Many more exist (like Beam stack search [ZH05], BULB [FK05], Anytime Focal Search
[CGM+18] etc.). Also, one can study other branch-and-bound components like performing
a local-search within each node [JSP+17, DCGT04] or the probing strategy (starting a
greedy algorithm at each node to obtain a better quality estimate). This would probably
lead to better insights on when and how using anytime tree search while facing operations
research problems.

To try and evaluate the contribution of such building blocks and ideas on various
problems, we started developing a framework for generic Tree-Search, which allows us to
address a combinatorial problem as a branching scheme, specific prunings, LP cuts, and
bounds and then to apply generic Tree Search strategies. This might lead to a new standard
way (aside Mathematical Programming, Constraint Programming, local-search [GBD+14],
Satisfiability of Boolean Clauses, etc.) to define and solve combinatorial problems.

Table 4.1 legend: BKLB (resp. BKUB) refers to the Best Known Lower Bound
(resp. Upper Bound) from our literature review.
BS,PE,P refers to the combination of Beam Search, Prefix Equivalence and Prefix bound.
BS,PE,IO refers to Beam Search, Prefix Equivalence and Ingoing/Outgoing bound.
BS,PE,MST refers to the Beam Search with Prefix Equivalence and MST bound.
BS,P refers to the Beam Search with the Prefix bound and without Prefix Equivalence.
DFS,PE,P refers to Depth First Search with Prefix Equivalence and Prefix bound.
LDS,PE,P refers to limited Discrepancy Search with Prefix Equivalence and Prefix bound.
“T record” indicates the time required by BS,PE,P to reach a solution of value BKUB or
lower.
“T opt” indicates the time required by BS,PE,P to close the instance.

Bold instances are still open.
"-" (in column BS,PE,MST) indicate that no solution has been found by the method within
600 seconds.
"-" (in columns record (resp. opt)) indicate that no new record (resp. proof of optimality)
was found by any of our methods.
Bold objective values indicate when the method was able to close the instance within
the time limit.
Underlined objective values indicate an improvement of best-known solutions.

74

In
st

an
ce

B
K

L
B

B
K

U
B

B
S,

P
E
,P

B
S,

P
E
,I
O

B
S,

P
E
,M

ST
B

S,
P

D
F
S,

P
E
,P

L
D

S,
P
E
,P

T
re

co
rd

(s
)

T
op

t
(s

)

R
.2

00
.1

00
.1

61
61

18
9

18
9

29
9

18
9

28
3

19
2

-
-

R
.2

00
.1

00
.1

5
1.

79
2

1.
79

2
1.

79
2

1.
79

2
1.

88
7

1.
79

6
3.

74
0

2.
32

5
19

.5
-

R
.2

00
.1

00
.3

0
4.

21
6

4.
21

6
4.

21
6

4.
21

6
4.

21
6

4.
24

9
4.

21
6

4.
21

6
0.

1
0.

6
R

.2
00

.1
00

.6
0

71
.7

49
71

.7
49

71
.7

49
71

.7
49

71
.7

49
71

.7
49

71
.7

49
71

.7
49

0.
0

0.
0

R
.2

00
.1

00
0.

1
1.

40
4

1.
40

4
2.

55
4

2.
55

4
3.

39
8

2.
55

4
3.

44
8

2.
68

4
-

-
R

.2
00

.1
00

0.
15

20
.4

81
20

.4
81

20
.4

81
20

.4
81

20
.9

52
20

.5
17

34
.9

82
25

.5
92

16
.3

54
7.

7
R

.2
00

.1
00

0.
30

41
.1

96
41

.1
96

41
.1

96
41

.1
96

41
.1

96
41

.7
28

41
.1

96
41

.1
96

0.
1

0.
4

R
.2

00
.1

00
0.

60
71

.5
56

71
.5

56
71

.5
56

71
.5

56
71

.5
56

71
.5

56
71

.5
56

71
.5

56
0.

0
0.

0

R
.3

00
.1

00
.1

26
26

21
4

21
4

40
6

20
4

26
5

22
5

-
-

R
.3

00
.1

00
.1

5
3.

15
2

3.
15

2
3.

15
2

3.
15

2
3.

45
8

3.
20

1
5.

35
5

4.
08

1
17

8.
9

-
R

.3
00

.1
00

.3
0

6.
12

0
6.

12
0

6.
12

0
6.

12
0

6.
33

0
6.

20
0

6.
12

0
6.

12
0

2.
2

7.
9

R
.3

00
.1

00
.6

0
9.

72
6

9.
72

6
9.

72
6

9.
72

6
9.

72
6

9.
72

6
9.

72
6

9.
72

6
0.

0
0.

0
R

.3
00

.1
00

0.
1

1.
29

4
1.

29
4

3.
08

0
3.

08
0

4.
78

4
2.

88
8

3.
55

1
3.

01
2

-
-

R
.3

00
.1

00
0.

15
29

.0
06

29
.0

06
29

.0
06

29
.0

06
33

.8
85

29
.4

81
51

.1
52

43
.5

97
22

0.
0

-
R

.3
00

.1
00

0.
30

54
.1

47
54

.1
47

54
.1

47
54

.1
47

54
.4

91
54

.5
33

55
.7

91
54

.1
47

0.
4

3.
6

R
.3

00
.1

00
0.

60
10

9.
47

1
10

9.
47

1
10

9.
47

1
10

9.
47

1
10

9.
47

1
10

9.
47

1
10

9.
47

1
10

9.
47

1
0.

0
0.

0

R
.4

00
.1

00
.1

13
13

19
1

19
1

-
17

5
29

5
20

3
-

-
R

.4
00

.1
00

.1
5

3.
87

9
3.

87
9

3.
87

9
3.

87
9

5.
01

1
3.

96
1

8.
10

3
6.

58
4

17
6.

7
-

R
.4

00
.1

00
.3

0
8.

16
5

8.
16

5
8.

16
5

8.
16

5
8.

21
0

8.
18

3
8.

16
5

8.
16

5
0.

4
2.

1
R

.4
00

.1
00

.6
0

15
.2

28
15

.2
28

15
.2

28
15

.2
28

15
.2

28
15

.2
28

15
.2

28
15

.2
28

0.
0

0.
0

R
.4

00
.1

00
0.

1
1.

34
3

1.
34

3
3.

24
7

3.
24

7
-

3.
24

7
4.

46
6

3.
52

5
-

-
R

.4
00

.1
00

0.
15

35
.3

64
38

.9
63

38
.9

63
38

.9
63

53
.7

89
39

.7
22

76
.4

63
69

.3
42

15
7.

2
-

R
.4

00
.1

00
0.

30
85

.1
28

85
.1

28
85

.1
28

85
.1

28
87

.6
98

85
.7

20
85

.1
28

85
.1

28
0.

5
1.

8
R

.4
00

.1
00

0.
60

14
0.

81
6

14
0.

81
6

14
0.

81
6

14
0.

81
6

14
0.

81
6

14
0.

81
6

14
0.

81
6

14
0.

81
6

0.
0

0.
0

R
.5

00
.1

00
.1

4
4

26
7

27
5

-
20

2
27

2
23

2
-

-
R

.5
00

.1
00

.1
5

4.
62

8
5.

28
4

5.
26

1
5.

26
1

7.
59

3
5.

41
1

9.
91

7
9.

61
0

20
6.

5
-

R
.5

00
.1

00
.3

0
9.

66
5

9.
66

5
9.

66
5

9.
66

5
10

.3
88

9.
77

8
10

.9
99

9.
66

5
1.

4
6.

2
R

.5
00

.1
00

.6
0

18
.2

40
18

.2
40

18
.2

40
18

.2
40

18
.2

40
18

.2
57

18
.2

40
18

.2
40

0.
0

0.
1

R
.5

00
.1

00
0.

1
1.

31
6

1.
31

6
4.

07
9

4.
07

9
-

3.
54

1
4.

70
3

3.
71

7
-

-
R

.5
00

.1
00

0.
15

43
.1

34
49

.5
04

49
.3

66
49

.3
66

71
.8

88
50

.6
24

10
3.

98
5

94
.6

25
12

0.
8

-
R

.5
00

.1
00

0.
30

98
.9

87
98

.9
87

98
.9

87
98

.9
87

11
5.

07
4

99
.4

92
11

4.
54

4
98

.9
87

1.
7

3.
8

R
.5

00
.1

00
0.

60
17

8.
21

2
17

8.
21

2
17

8.
21

2
17

8.
21

2
17

8.
21

2
17

8.
35

5
17

8.
21

2
17

8.
21

2
0.

0
0.

0

R
.6

00
.1

00
.1

1
1

28
9

28
9

-
28

9
30

6
24

6
-

-
R

.6
00

.1
00

.1
5

4.
80

3
5.

47
2

5.
46

9
5.

46
9

9.
32

9
5.

69
5

13
.0

07
10

.9
39

16
0.

5
-

R
.6

00
.1

00
.3

0
12

.4
65

12
.4

65
12

.4
65

12
.4

65
12

.9
29

12
.4

75
13

.8
99

12
.4

65
3.

1
10

.3
R

.6
00

.1
00

.6
0

23
.2

93
23

.2
93

23
.2

93
23

.2
93

23
.2

93
23

.3
24

23
.2

93
23

.2
93

0.
0

0.
0

R
.6

00
.1

00
0.

1
1.

33
7

1.
33

7
4.

03
0

4.
03

0
-

3.
85

3
4.

81
4

4.
07

4
-

-
R

.6
00

.1
00

0.
15

47
.0

42
55

.2
13

54
.9

94
54

.9
94

90
.9

77
55

.7
48

11
5.

29
5

10
8.

16
4

18
3.

6
-

R
.6

00
.1

00
0.

30
12

6.
78

9
12

6.
78

9
12

6.
79

8
12

6.
79

8
15

8.
42

5
12

8.
76

1
14

5.
67

2
12

6.
79

8
1.

6
7.

2
R

.6
00

.1
00

0.
60

21
4.

60
8

21
4.

60
8

21
4.

60
8

21
4.

60
8

21
4.

60
8

21
4.

60
8

21
4.

60
8

21
4.

60
8

0.
1

0.
1

R
.7

00
.1

00
.1

1
1

18
6

25
0

-
18

6
28

1
25

8
-

-
R

.7
00

.1
00

.1
5

5.
94

6
7.

02
1

7.
02

0
7.

02
0

11
.3

92
7.

22
0

13
.7

78
13

.2
06

38
6.

9
-

R
.7

00
.1

00
.3

0
14

.5
10

14
.5

10
14

.5
10

14
.5

10
17

.1
25

14
.6

32
19

.6
55

14
.5

10
4.

2
21

.6
R

.7
00

.1
00

.6
0

24
.1

02
24

.1
02

24
.1

02
24

.1
02

24
.8

48
24

.1
02

24
.1

02
24

.1
02

0.
2

0.
5

R
.7

00
.1

00
0.

1
1.

23
1

1.
23

1
4.

40
3

4.
40

3
-

4.
04

2
4.

62
9

4.
02

8
-

-
R

.7
00

.1
00

0.
15

54
.3

51
65

.3
05

64
.7

77
64

.7
77

10
8.

62
7

65
.7

75
14

1.
54

4
12

1.
18

9
25

.5
-

R
.7

00
.1

00
0.

30
13

4.
47

4
13

4.
47

4
13

4.
47

4
13

4.
47

4
15

8.
32

7
13

6.
07

3
15

8.
61

3
13

4.
47

4
1.

3
4.

8
R

.7
00

.1
00

0.
60

24
5.

58
9

24
5.

58
9

24
5.

58
9

24
5.

58
9

24
5.

68
8

24
5.

75
2

24
5.

58
9

24
5.

58
9

0.
1

0.
1

nb
cl

os
ed

25
25

11
0

17
0

T
ab

le
4.
1:

T
re
e
se
ar
ch

co
m
po

ne
nt
s
pe

rf
or
m
an

ce
.

75

WORKSPACE/
cats-framework/

[...]
cats-ex-sop/

src/
Instance.hpp
NodeForward.hpp
main.cpp
checker.hpp

insts/
R.700.1000.15
[...]

Figure 4.3: example project directory overview

4.6 A CATS-framework application example

We believe that the code we developed during the SOP study (Chapter 4), is relatively
simple (around 250 lines of code) and provides good results (new best-so-far solutions on
6 over 7 open instances of the SOPLIB). For these reasons, we believe that it is a good
example of an application of the CATS framework and allows a simple usage example and
tutorial.

The complete example source code is available at https://gitlab.com/librallu/
cats-ex-sop
We use the version 0.3 of the cats-framework for this example.

4.6.1 Project Architecture

The project is structured as follows: the cats-framework (version 0.3) directory, and the
cats-ex-sop directory (our working directory) are at the same level. The cats-ex-sop di-
rectory contains a source sub-directory (src), an instance directory (insts) where we put
the SOPLIB instances. For the sake of simplicity, we do not discuss the files used for
compilation (CMakeLists.txt, etc.). Figure 4.3 presents an illustration of the workspace.

4.6.2 Problem description – instances & solutions

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

(a) arc weights

a b

c

d

e

(b) precedence constraints

a b c d e

a 0 1 3 2 ∞
b -1 0 3 1 2
c -1 4 0 -1 2
d -1 2 2 0 1
e -1 -1 -1 -1 0

(c) matrix representation

Figure 4.4: Example of a SOP instance with 5 vertices and 1 precedence constraint where
a is the start vertex and e the end vertex.

76

https://gitlab.com/librallu/cats-ex-sop
https://gitlab.com/librallu/cats-ex-sop

Consider the example given in Figure 4.4. An instance is defined by two graphs: the
arc weight graph that indicates the cost of selecting an edge and the precedence graph that
indicates the precedence constraints (i.e. if there is an arc from u to v in the precedence
graph, u must be scheduled before v).

It is also possible to encode an SOP instance within a matrix (see Figure 4.4c). If
Mij ≥ 0, the edge (i, j) exists and costs Mij . If Mij = −1, it indicates that j must precede
i (and thus, arc i, j does not exist). Finally, the arc from the start vertex going to the end
vertex is infeasible and has weight ∞ (in practice a very large weight).

4.6.3 Instance format

The instance presented in Figure 4.4 is described by the following file. The first line is the
number of vertices n (here n = 5). Then, each line represents each vertex (a, then b, etc.).
Each -1 represents a precedence constraint. In the example, we can see that b, c, d, e cannot
be placed before a, e cannot be placed before a, b, c, d and c cannot be placed before d.

ex.sop

5
0 1 3 2 999
-1 0 3 1 2
-1 4 0 -1 2
-1 2 2 0 1
-1 -1 -1 -1 0

4.6.4 Solution format

The solution < a, b, d, c, e > can be described in the following format where each vertex is
represented by an id starting by 0 (a is represented by 0, b by 1, etc.).

opt.sol

0 1 3 2 4

4.6.5 Reading the instance & pre-processings

We first parse the instance files and preprocess some information that will be used exten-
sively during the search. Preprocessing information as much as we can is usually efficient
since these computations will be possibly executed millions of times during the search. All
of this information is stored in the Instance class. For the sake of simplicity, we omit in
this document the details of the file-parsing code1.

We first define the following C++ types (not mandatory but is good practice):

• NodeId that represents the node id (as an integer)

• Weight that represents the cost of selecting an arc (and the cost of solutions)

• Precedence that is a couple of two vertices (u, v) indicates that u must precede v

We then build the instance class that provides the following information:
1this code is available in the companion git repository

77

• n: instance size, get_n procedure

• wij = Mij : cost of selecting arc (i, j), get_weight procedure

• possible successors of u: all vertices except u and its predecessors in the precedence
graph. We use this procedure to enumerate all next vertices of a given partial solution.
get_possible_successors procedure.

• predecessors of u: all predecessors of u in the precedence graph. We use this proce-
dure to check that all dependencies of u are satisfied before adding it. get_predecessors
procedure.

• start and end vertices: return the start vertex id (resp. the end vertex id). get_start_vertex
and get_end_vertex procedures.

the following C++ code shows the Instance getters defined above.
Instance.hpp – getters

NodeId get_n();
Weight get_weight(NodeId i, NodeId j);
std::vector<NodeId>& get_possible_successors(NodeId i);
std::vector<NodeId>& get_predecessors(NodeId i);
std::vector<Precedence>& get_precedences();
NodeId get_start_vertex() const;
NodeId get_end_vertex() const;

4.6.6 Search tree definition

We now define the search tree that we will use in our tree search algorithm. A search tree
definition is implemented as a class called Node (it can be seen as a form of an interface).
Possibly, one can define a PrefixEquivalenceNode that allows defining an equivalence class
for a node. It can be seen as a form of dynamic programming integration that allows
pruning dominated or symmetric nodes. This class will contain as a constructor, the root
definition, a getChildren method that returns all the node children, an isGoal method
that returns true if the node is a feasible solution and bounds and guides function (resp.
evaluate and guide) that will be used to prune nodes and guide the search. We call this
class NodeForward as it performs a forward search (i.e. starting by the starting vertex and
constructing the partial solutions by appending a new vertex at the end of it).

Each node will be copied multiple times. Thus, the less attributes in the node, the better
(both for computation time and memory usage). In this example, we use 4 attributes:

• inst a reference to the instance. A C++ reference acts similarly as pointers, thus
only uses a few bytes.

• prefix an array containing all the vertices selected in the partial solution. We use
this information to reconstitute the final solution.

• cost_prefix an integer used to compute the cost of the partial solution.

• added_subset A subset of vertices corresponding to the set of already added vertices.
It is implemented in an efficient way using bitsets to limit the memory usage and can
add/access a vertex in O(1).

78

NodeForward.hpp – Attributes

class NodeForward : public PrefixEquivalenceNode<PE_SOP> {
private:

Instance& inst_;
std::vector<NodeId> prefix_;
Weight cost_prefix_;
SubsetInt added_subset_;

With this attributes, the root definition initializes the prefix to the start vertex s, the
cost to 0 and the added subset to {s}. We also define a copy constructor that allows to
copy nodes. It will be used during the search and to create children.

NodeForward.hpp – Constructors

explicit NodeForward(Instance& inst):
Node(), inst_(inst), cost_prefix_(0), added_subset_() {

prefix_.push_back(inst_.get_start_vertex());
added_subset_.add(inst_.get_start_vertex());

}

explicit NodeForward(const NodeForward& s): Node(s), inst_(s.inst_),
prefix_(s.prefix_), cost_prefix_(scost_prefix_), added_subset_(s.added_subset_) {}

inline NodePtr copy() const override { return NodePtr(new NodeForward(*this)); }

We first design two helper methods:

• lastCity : that returns the last city added within the node

• addCity : that adds a city to the node (used in addition to a copy, to create a child)

We now define the getChildren method. For every possible successor (called neigh), we
check that it is not already added, and that all its predecessors are added. If so, we add it
to the children list.

NodeForward.hpp – Children

inline std::vector<NodePtr> getChildren() override {
std::vector<NodePtr> res;
NodeId last_city_ = lastCity();
// for each vertex, check if we can add it
for (NodeId neigh : inst_.get_possible_successors(last_city_)) {

// check that it is not already added and preds satisfied
bool to_add = !added_subset_.contains(neigh);
// check that precedences are satisfied
if (to_add) {

for (NodeId u : inst_.get_predecessors(neigh)) {
if (!added_subset_.contains(u)) {

to_add = false;
break;

}
}

}
if (to_add) { // generate children and add it to the result

NodeForward* child = new NodeForward(*this);
child->addCity(neigh);
res.push_back(NodePtr(child));

79

}
}
return res;

}

inline NodeId lastCity() const { return prefix_.back(); }

inline void addCity(NodeId j) {
NodeId i = lastCity();
added_subset_.add(j);
prefix_.push_back(j);
cost_prefix_ += inst_.get_weight(i, j);

}

We define our last mandatory function, the goal condition. A node is a goal if it contains
every vertex of the instance (and ends by vertex t). The framework also allows defining a
handleNewBest method. This method is called when a node is a goal and found a best-so-
far solution. We use it to call a checker (to validate the correctness of our implementation
and solutions) and to write the solution in a file.

NodeForward.hpp – Goal

inline bool isGoal() const override {
return inst_.get_n() == static_cast<int>(prefix_.size());

}

void handleNewBest() override {
double check_val = checker(inst_, prefix_);
assert(check_val == this->evaluate());
// write solution file
[...]

}

Dominances and the dominance combinator The code presented above would be
enough to implement a simple beam search for the SOP. As we show in this chapter, this
algorithm would be competitive with the state-of-the-art. However, we can integrate some
dominances to further improve the algorithm. The prefix equivalence dominance can be
roughly described as follows: For each node in the search tree, we store the set of visited
cities, the last city, and the cost of the partial solution. If, during our search, we find another
node with the same set of visited cities and last city with a larger cost, we may discard
this node as it is “dominated” by another node. To implement this component, we store
all entries in a data structure and perform queries efficiently. To this extent, hash-tables
seem to be a good candidate. Using the framework, we have to define a structure defining
a prefix equivalence for SOP (called PE_SOP) and a hash function (called nodeEqhash)
for PE_SOP. Once these definitions are done, all the other parts of the dominance (prefix
equivalence store and domination combinator) are implemented in the framework.

NodeForward.hpp – Prefix Equivalence

/**
* SOP prefix equivalence
*/

80

struct PE_SOP {
SubsetInt subset;
int last;

PE_SOP(const PE_SOP& n) :
subset(n.subset), last(n.last) {}

PE_SOP(const SubsetInt sub, int l) : subset(sub), last(l) {}

bool operator==(const PE_SOP& a) const {
if (last != a.last) return false;
return subset == a.subset;

}
};

/**
* hash function taking a nodeEquivalenceSOP as a parameter
*/

struct nodeEqHash {
size_t operator()(const PE_SOP& n) const noexcept {

size_t seed = n.subset.hash();
boost::hash_combine(seed, static_cast<size_t>(n.last));
return seed;

}
};

To finalize the implementation of the prefix equivalence dominance, we now add the
getPrefixEquivalence attribute to the NodeForward class using the type defined above.

NodeForward.hpp – Prefix Equivalence in NodeForward

inline PE_SOP getPrefixEquivalence() const override {
return PE_SOP(added_subset_, lastCity());

}

4.6.7 Wrapping everything together

In the previous subsections, we defined the instance and the search tree. We can now wrap
everything together and build the tree search algorithm. We start by parsing the user
input. The user will provide the instance name and the execution time (time limit).

main.cpp – Parsing the program input

if (argc < 3) {
std::cout << "\n[ERROR] USAGE: " << argv[0] << " INSTANCE TIME" << std::endl;
return 1;

}

// parse user input
Instance inst(argv[1]);
int time_limit = std::stoi(argv[2]);

We define static objects. The first one, the search manager, maintains the best-so-
far solution, the best-known upper and lower bounds and displays information during the
search. The prefix equivalence store maintains for each node equivalence class the best-so-
far cost.

81

main.cpp – Static objects definition

// defines the search manager and the prefix equivalence store
SearchManager search_manager = SearchManager();
GenericPEStoreHash<PE_SOP, nodeEqHash, DominanceInfos2> prefix_equivalence_store;

We define the root of the node. It is first defined using the NodeForward class. Then, we
add a statistics combinator. This combinator will give us feedback on the number of opened
nodes, the number of bound evaluations, etc. Finally, we add a dominance combinator.

main.cpp – Search tree definition

// define root of the tree
NodePtr root_ptr = NodePtr(new NodeForward(inst));

// measure some node openings, etc.
root_ptr = NodePtr(new StatsCombinator<PE_SOP>(

root_ptr, search_manager, search_manager.getSearchStats(), false
));

// add the prefix equivalence domination combinator
root_ptr = NodePtr(new DominanceCombinator2<PE_SOP>(

root_ptr, search_manager, prefix_equivalence_store
));

We now define the tree search. We choose to use an iterative beam search with a
starting width D = 1 and a growth factor of 2. Finally, we tell the search manager the
search started (it starts the time measurement) and run the tree search algorithm.

main.cpp – Tree search algorithm definition

// construct the tree search algorithm
TreeSearchParameters ts_params = {.root = root_ptr, .manager = search_manager, .id = 0};
auto ts = IterativeBeamSearch(ts_params, 1, 2, true);

// start the search
search_manager.start();
ts.run(time_limit);

After the search ends (after the time limit or the tree search exhausted the search tree),
we can print diverse information about the search. In this case, we print the different search
statistics, the dominance informations and the performance profile informations in a json
format.

main.cpp – getting search statistics

// display statistics and write performance profile file
search_manager.printStats();
prefix_equivalence_store.printStats();
search_manager.writeAnytimeCurve("perfprofile_ibs.json", "Iterative Beam Search");

Finally, we can compile and execute our program and observe the following output:
program output

./main.exe insts/R.700.1000.15.sop 60

sol nb time nb nodes nodes/s objective algorithm node name

82

1 0.005 2 K 575 K 151.331 BS(id:0,1) D2((forward))
2 0.027 9 K 334 K 109.960 BS(id:0,2) D2((forward))
3 0.145 21 K 149 K 97.104 BS(id:0,4) D2((forward))
4 0.256 47 K 184 K 88.343 BS(id:0,8) D2((forward))
5 0.341 101 K 296 K 76.951 BS(id:0,16) D2((forward))
6 0.510 207 K 407 K 74.786 BS(id:0,32) D2((forward))
7 0.856 420 K 491 K 69.446 BS(id:0,64) D2((forward))
8 1.558 834 K 535 K 68.056 BS(id:0,128) D2((forward))
9 3.077 1 M 531 K 66.430 BS(id:0,256) D2((forward))
10 6.308 3 M 502 K 65.482 BS(id:0,512) D2((forward))
11 13.274 6 M 456 K 65.182 BS(id:0,1024) D2((forward))
12 29.564 11 M 385 K 65.011 BS(id:0,2048) D2((forward))

========== Search statistics ===========
nb generated 20.748.134
nb expanded 3.699.873
nb trashed 0
nb pruned 0
avg branching factor 5.61
nb evaluations 193
nb guide calls 463.707.272
searched 60.0397 s
generated nodes / s 345.573
Primal 65.011
==== Prefix Equivalence statistics =====
nb elements in store 1.657.577
nb prefix eq cuts 1.872.070
nb prefix eq stores 1.657.577
nb prefix eq accesses 3.914.366
nb PE exist tests 5.571.943

This example presented the workflow we currently use to solve combinatorial problems
using the combinator-based framework. In this example, we discussed the preprocessing
steps we performed and the way we defined the search tree. This (relatively) simple
program contains approximately 200-300 lines of code and is able to obtain state-of-the-
art performance (see Chapter 4 for more details about the state-of-the-art). Finally, we
believe that this framework allows building a very effective tree search algorithm in a few
days on many optimization problems. Moreover, it allows to quickly prototype various
versions with different components. Lets us suppose we want to perform a comparison of
various tree search algorithms (namely DFS, IBS, LDS, MBA*). We can simply replace
the tree search procedure by another and run the search.

program output

// auto ts = DFS(ts_params);
auto ts = IterativeBeamSearch(ts_params, 1, 2, true);
// auto ts = IterativeMBAStar(ts_params, 1, 2);
// auto ts = LDS(ts_params);

We can then use a script provided in the framework that parses the performance profile
json files for every tree search algorithm and display an image of it (Figure 4.5).

83

10−2 10−1 100 101

time

105

ob
je

ct
iv

e

DFS

Iterative Beam Search

LDS

MBA*

Figure 4.5: Tree search comparison on the R.700.1000.15 SOP instance

84

5
Conclusions & Perspectives

5.1 Main conclusions

In this thesis, we discussed a generic methodology to build anytime tree-search algorithms
that aim to provide near-optimal solutions to large-scale instances. Such algorithms are
built using ideas from classical branch-and-bound components from exact methods (us-
ing bounds, symmetry breaking and dominance schemes), integrating guidance strategies
from constructive meta-heuristics and search strategies from AI/planning. Chapter 1 pre-
sented the different concepts found in classical branch-and-bounds, meta-heuristics and
AI/Planning. Chapter 2 presented our generic implementation of anytime tree search al-
gorithms and how one can integrate all of these concepts. Chapters 3 and 4 presented
situations where anytime tree search algorithms proved to be efficient. Namely on the
EURO/ROADEF challenge, an industrial Cutting & Packing problem and the sequential
ordering problem, a well-known academic transportation problem1.

“A metaheuristic is a high-level problem-independent algorithmic framework that
provides a set of guidelines or strategies to develop heuristic optimization algorithms.”
[SG13, SSG17].

Considering the meta-heuristic definitions in the literature (see an example above),
two key points appear: They consist of a problem-independent methodology that could be
applied to many optimization problems. They also are heuristic algorithms, that aim to
provide near-optimal solutions in a reasonable time.

According to these points, anytime tree search algorithms are meta-heuristics (while
also being branch-and-bounds). Indeed, it is a problem-independent formalism (where the
search space is modeled as a tree) and aims to provide near-optimal solutions fast. Such
a remark allows considering anytime tree search algorithms as branch-and-bounds and at
the same time as meta-heuristics, two categories that are usually considered disjoint. They
can easily benefit from both guidance functions found in constructive meta-heuristics and
search-space reductions from exact methods (bounds, dominances etc.). As the studies
presented in this thesis suggest, all these components play a major role in the algorithm
performance.

1We may also note that similar algorithms have been applied to scheduling problems [STDC18,
GMMT20].

85

We believe this representation of anytime tree search algorithms as meta-heuristics is
rather new. We also believe that the representation of anytime tree search algorithms in
the Operations Research literature does not reflect the benefits of applying such methods
on complex optimization problems. To the best of our knowledge, many of them remain
unexplored such as Beam Stack Search [ZH05], SMA* [Rus92] or Anytime Column Search
[CGM+18].

In this thesis, we discussed several problems in which tree search algorithms obtained
state-of-the-art performance. We aim in this paragraph to draw general conclusions on
when such algorithms are interesting and what would be the apriori most interesting al-
gorithmic components. We may keep in mind that such general conclusions are meant
to be a relatively good starting point to solve a combinatorial problem or if anytime tree
search algorithms can be suited to tackle a problem. We advocate more research to vali-
date (or invalidate) these conclusions on other problems. We already started to challenge
these working hypotheses by implementing tree search algorithms on other combinatorial
optimization problems. Namely the Longest Common Subsequence problem where we ob-
tained competitive results and even some new best-so-far solutions, and on the Permutation
flowshop.

The first (obvious) property that makes an anytime tree search good is the search-space
size (i.e. the size of the tree). It is the average branching factor (average number of children
per node) and the average depth of the tree. Search-space reductions techniques from exact
methods can lead to a significant decrease in tree size as prefix equivalence dominances
in Chapter 4 has proven to be a key component. However, as it is usually described
in the Constraint Programming literature, a compromise has to be found regarding the
node inference (reasoning work done within each node). The more reasoning, the smaller
the search space, but also the fewer nodes opened. While considering anytime tree search
algorithms, it seems that the computational-cost/search-space-reduction balance favors the
fastest reasonings to improve the algorithm performance (computing a minimum spanning
tree is already too costly on SOP). Some problems can be heavily constrained. For instance,
SOPLIB: on open instances, our search tree nodes have 5 to 7 children on average even on
the largest instances. The more the constraints, the more efficient the tree search algorithm
will be (in contrast to local-search-based or classical MIP-based methods that tend to
struggle on heavily constrained instances). However, on loosely constrained instances, the
search tree becomes too large to maintain a good performance while local search gets much
better solutions (thus the complementarity of both approaches) and MIP-based approaches
have a very good guidance and search-tree-reduction thus being able to prove optimality
on loosely constrained instances. However, this “search-tree size condition” is not sufficient
to explain the success of tree search approaches.

It is common to use a bound to guide anytime branch-and-bound algorithms. This
bound also allows to perform prunings. However, as we demonstrated in Chapter 3, using
a bound to guide the search may lead to biases in the search (for instance, small items
first where good solutions have some regularity within the average size) that leads to
poor-quality solutions. In the other hand, many constructive meta-heuristics (for instance
GRASP or ACO) use a heuristic guidance strategy. This guide helps the search to find
better solutions, but cannot be used easily for pruning. Indeed, as constructive meta-
heuristics usually perform local-search on newly-obtained solutions, a not-so-good solution
may lead to an excellent one after local-search. Considering both classes of algorithms,

86

it may be useful to distinguish two distinct mechanisms within branch-and-bounds. The
bounds and the guides. Bounds are used to fathom nodes that are dominated by the
best-so-far solution and the guidance used to help focusing on the most interesting region
of the search-space. Doing so, excellent solutions can be obtained, even if the search-
tree is relatively large. For instance, in many situations, the algorithm we designed for the
EURO/ROADEF glass-cutting challenge obtained the best solutions on loosely constrained
instances (with sometimes more than 100 children in average).

Another factor that could explain/predict the efficiency of an anytime tree search algo-
rithm is the proportion of “local constraints”. A local constraint can directly prune children
nodes that violate the constraint, thus benefiting the algorithm by limiting the tree size.
If the other hand, in some other cases, a constraint can be violated, but the algorithm
would be able to tell only after many decisions. Thus, it could result in a large proportion
of “useless” explored nodes, thus harming the ability to find feasible solutions. The algo-
rithm we designed in Chapter 3 uses some symmetry-breaking schemes that prunes many
nodes that are symmetric to some other nodes (some are more aggressive than others). It
turned out that the most aggressive ones struggled to find good solutions because the tree
search procedure spent too much time in parts of the tree that would be pruned by the
symmetry-breaking scheme. The best option was to perform a less aggressive scheme that
still reduces the search tree while not spending too much time on to-be-pruned parts of
the tree. We may note that it is possible to integrate some no-good recording strategy to
“learn” parts of the tree that would be pruned, thus improving the algorithm performance
while using these symmetry-breaking schemes.

Finally, the search strategy also plays an important role. As we discussed in Chapter
4, while being an anytime algorithm, DFS does not often compete with classical meta-
heuristics. However, just by replacing it by an iterative beam search, the resulting branch-
and-bound can reach similar results as the Ant Colony Optimization + Simulated An-
nealing hybrid that found the previous best-known results on the SOPLIB. It is unlikely
that there exists a universal anytime tree search algorithm that outperforms all the others.
However, according to our experiments, iterative beam search appears to be a first good
candidate as it obtains good results on many scenarios. To date, it is the best one for the
SOP (Chapter 4) and is relatively performant on the glass-cutting challenge (Chapter 3),
slightly behind iterative MBA*2. Even if iterative beam search may reopen nodes, it is
guaranteed not to open too many nodes. In the worst case, it would reopen each node
only once in average (see Chapter 1). Both methods we proposed only perform a very
light inference and are able to open millions of nodes per second. Thus, reopening a node
is inexpensive compared to the overhead induced by the data-structure (for instance, a
binary heap) that maintains a memory of the opened nodes (usually O(lnn)). In a context
where opening a node costs much more, it may be interesting to consider variants of the
iterative beam search that do not reopen nodes (for instance beam stack search [ZH05], or
anytime column search [VGAC12]).

2As a side remark, MBA* seems to be less efficient than iterative beam search on many problems
(except the glass-cutting challenge). The reasons why MBA* performs so well in this specific case is, for
now, an open question.

87

5.2 Perspective and future research

In this thesis, we focused on anytime tree search algorithms to better assess their per-
formance. They seem to obtain excellent results on some classes of problems and greatly
complement perturbation-based methods where the instance contains many precedence
constraints. The two types of methods can be combined. For instance, we may cite Re-
covering Beam Search [GP05, DCT02] that integrates a local search step on each node of
the search tree. This local-search iteration allows us to “recover” from bad decisions taken
before. This technique has shown to be efficient on various scheduling problems and gener-
alizes the classical local-search executed on solutions found in constructive meta-heuristics
as GRASP and Ant Colony Optimization.

A second combination with meta-heuristics could be to add an online-learning pro-
cedure within an anytime tree search. Indeed, as discussed in Chapter 1, Ant Colony
Optimization performs a series of greedy randomized runs with a learning mechanism to
take into account the information provided by the previous iterations. Such learning com-
ponents can be integrated within another anytime tree search. For instance, Beam ACO
[Blu05a] replaces the classical greedy randomized by a randomized Beam Search. This
method allowed to obtain state-of-the-art algorithms on various optimization problems
[Blu05a, Blu08, LIB10]. The combination of the learning part from ACO and anytime tree
search can lead to new competitive methods. In the future, we may, for instance, see a
new LDS-ACO or MBA*-ACO.

Another combination, this time with exact methods, could be to develop further inter-
actions between anytime tree search and exact approaches. Indeed, while exact methods
bounds are usually stronger and more expensive to compute, they provide a good space
reduction. Thus, modifying the search strategy of MIP-based branch-and-bounds or Con-
straint Programming may build another efficient heuristics. Some steps have already been
done in this direction. Indeed, an ant optimization framework has been used to solve con-
straint programming problems [Sol10]. More recently, LDS-based divings have been used
combined within a branch & price to replace their greedy equivalents [SVP+19] and using
column-generation based heuristic procedures become more and more popular [CSVV19].

Regarding the Combinator-based Anytime Tree Search framework (Chapter 2), we
believe that it could be an interesting tool to quickly prototype and develop anytime tree
search algorithms. One obvious direction could be to integrate more components. We
already implemented some Ant Colony Optimization algorithms within the framework to
add a online-learning component to the algorithms we presented. The next step would be
to evaluate the performance of the combination of Beam Search, MBA*, LDS, etc. with the
ACO-combinator. Furthermore, in this thesis, we focused our implementations on anytime
tree search algorithms. However, they can benefit from the hybridization with classical
meta-heuristics. For instance by the combination of a genetic algorithm and local search
[RLT12]. To this extent, we may develop some simple local-search or genetic algorithms
within the framework or build wrappers for an existing framework (EasyLocal++ [DGS03]
seems to be a good candidate as written in C++ and with a relatively close architecture).
Moreover, implementing a specific tree search algorithm for a given problem takes time
and expertise. Constraint Programming provides tools to easily model a problem and the
resolution techniques are rather similar as they explore a tree. Thus, simply replacing
the CP solver search strategy by an anytime tree search procedure would allow to get a
relatively efficient algorithm. To this extent, Gecode [SLT06] seems to be a good candidate

88

as it is written in C++ and uses copying, thus allowing good flexibility in the search.
Finally, the concept of combinator may be used for other classes of algorithms. We may
use combinators to modify the behavior of local-search algorithms. For instance, a guided
local search combinator that allows to penalize solutions that were previously seen.

89

Bibliography

[AAB+02] Enrique Alba, Francisco Almeida, M Blesa, J Cabeza, Carlos Cotta, Manuel
Díaz, Isabel Dorta, Joaquim Gabarró, Coromoto León, J Luna, et al. Mallba:
A library of skeletons for combinatorial optimisation. In European Confer-
ence on Parallel Processing, pages 927–932. Springer, 2002.

[Ach09] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, 2009.

[ACK07] Sandip Aine, PP Chakrabarti, and Rajeev Kumar. Awa*-a window con-
strained anytime heuristic search algorithm. In IJCAI, pages 2250–2255,
2007.

[ACV+09] Filipe Alvelos, T. M. Chan, Paulo Vilaça, Tiago Gomes, Elsa Silva, and
J. M. Valério de Carvalho. Sequence based heuristics for two-dimensional
bin packing problems. Engineering Optimization, 41(8):773–791, August
2009.

[AEGS93] Norbert Ascheuer, Laureano F Escudero, Martin Grötschel, and Mechthild
Stoer. A cutting plane approach to the sequential ordering problem (with
applications to job scheduling in manufacturing). SIAM Journal on Opti-
mization, 3(1):25–42, 1993.

[AHM09a] Hakim Akeb, Mhand Hifi, and Rym M’Hallah. A beam search algo-
rithm for the circular packing problem. Computers & Operations Research,
36(5):1513–1528, 2009.

[AHM09b] Hakim Akeb, Mhand Hifi, and Rym M’Hallah. A beam search algo-
rithm for the circular packing problem. Computers & Operations Research,
36(5):1513–1528, May 2009.

[AHM10] Hakim Akeb, Mhand Hifi, and Rym M’Hallah. Adaptive beam search looka-
head algorithms for the circular packing problem. International Transactions
in Operational Research, 17(5):553–575, 2010.

91

[AHN11] Hakim Akeb, Mhand Hifi, and Stéphane Negre. An augmented beam search-
based algorithm for the circular open dimension problem. Computers &
Industrial Engineering, 61(2):373–381, September 2011.

[AMPG11] Davide Anghinolfi, Roberto Montemanni, Massimo Paolucci, and
Luca Maria Gambardella. A hybrid particle swarm optimization approach
for the sequential ordering problem. Computers & Operations Research,
38(7):1076–1085, 2011.

[AMS20] Ignacio Araya, Mauricio Moyano, and Cristobal Sanchez. A beam search
algorithm for the biobjective container loading problem. European Journal
of Operational Research, March 2020.

[AR14] I. Araya and M. C. Riff. A beam search approach to the container loading
problem. Computers & Operations Research, 43:100–107, March 2014.

[Asc96] Norbert Ascheuer. Hamiltonian path problems in the on-line optimization
of flexible manufacturing systems. Technical Report TR 96–3, 1996.

[ASdC14] Filipe Alvelos, Elsa Silva, and José Manuel Valério de Carvalho. A Hy-
brid Heuristic Based on Column Generation for Two- and Three- Stage Bin
Packing Problems. In Beniamino Murgante, Sanjay Misra, Ana Maria A. C.
Rocha, Carmelo Torre, Jorge Gustavo Rocha, Maria Irene Falcão, David
Taniar, Bernady O. Apduhan, and Osvaldo Gervasi, editors, Computational
Science and Its Applications – ICCSA 2014, Lecture Notes in Computer
Science, pages 211–226, Cham, 2014. Springer International Publishing.

[AVMTP07] Ramón Alvarez-Valdes, Rafael Martí, Jose M. Tamarit, and Antonio Para-
jón. GRASP and Path Relinking for the Two-Dimensional Two-Stage
Cutting-Stock Problem. INFORMS Journal on Computing, 19(2):261–272,
May 2007.

[AVPT02] Ramón Alvarez-Valdés, Antonio Parajón, and Jose’e Manuel Tamarit.
A tabu search algorithm for large-scale guillotine (un)constrained two-
dimensional cutting problems. Computers & Operations Research,
29(7):925–947, June 2002.

[B+07] Jason Brownlee et al. Oat: The optimization algorithm toolkit. Complex
Intelligent Systems Laboratory (CIS), Centre for Information Technology
Research (CITR), Faculty of Information and Communication Technologies
(ICT), Swinburne University of Technology, Victoria, Australia, Technical
Report A, 20071220, 2007.

[BCD+19] Nadia Brauner, Yves Crama, Etienne Delaporte, Vincent Jost, and Luc
Libralesso. Do balanced words have a short period? Theoretical Computer
Science, 793:169–180, 2019.

[BCMS18] J. A. Bennell, M. Cabo, and A. Martínez-Sykora. A beam search approach to
solve the convex irregular bin packing problem with guillotine cuts. European
Journal of Operational Research, 270(1):89–102, October 2018.

92

[BCPT14] Mauro Maria Baldi, Teodor Gabriel Crainic, Guido Perboli, and Roberto
Tadei. Branch-and-price and beam search algorithms for the variable cost
and size bin packing problem with optional items. Annals of Operations
Research, 222(1):125–141, 2014.

[BD04] Christian Blum and Marco Dorigo. The hyper-cube framework for ant colony
optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 34(2):1161–1172, 2004.

[Bea85] J. E. Beasley. Algorithms for Unconstrained Two-Dimensional Guillotine
Cutting. Journal of the Operational Research Society, 36(4):297–306, April
1985.

[BG01] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial
Intelligence, 129(1-2):5–33, 2001.

[BHLR12] Ethan Andrew Burns, Matthew Hatem, Michael J Leighton, and Wheeler
Ruml. Implementing fast heuristic search code. In Fifth Annual Symposium
on Combinatorial Search, 2012.

[BHS97] Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. A new rank
based version of the ant system. a computational study. Central European
Journal of Operations Research, 1997.

[BJ12] Andreas Bortfeldt and Sabine Jungmann. A tree search algorithm for solv-
ing the multi-dimensional strip packing problem with guillotine cutting con-
straint. Annals of Operations Research, 196(1):53–71, July 2012.

[BJJ14] Thierry Benoist, Antoine Jeanjean, and Vincent Jost. Call-based dynamic
programming for the precedence constrained line traveling salesman. In
International Conference on AI and OR Techniques in Constriant Program-
ming for Combinatorial Optimization Problems, pages 1–14. Springer, 2014.

[Blu05a] Christian Blum. Ant colony optimization: Introduction and recent trends.
Physics of Life reviews, 2(4):353–373, 2005.

[Blu05b] Christian Blum. Beam-aco—hybridizing ant colony optimization with beam
search: An application to open shop scheduling. Computers & Operations
Research, 32(6):1565–1591, 2005.

[Blu08] Christian Blum. Beam-aco for simple assembly line balancing. INFORMS
Journal on Computing, 20(4):618–627, 2008.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lu-
cas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI
in games, 4(1):1–43, 2012.

[BS10] Julia A Bennell and Xiang Song. A beam search implementation for the
irregular shape packing problem. Journal of Heuristics, 16(2):167–188, 2010.

93

[BW87] J. O. Berkey and P. Y. Wang. Two-Dimensional Finite Bin-Packing Algo-
rithms. Journal of the Operational Research Society, 38(5):423–429, May
1987.

[BW09] Andreas Bortfeldt and Tobias Winter. A genetic algorithm for the two-
dimensional knapsack problem with rectangular pieces. International Trans-
actions in Operational Research, 16(6):685–713, 2009.

[CBSS08] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-
carlo tree search: A new framework for game ai. In AIIDE, 2008.

[CCTH15] Yi-Ping Cui, Yaodong Cui, Tianbing Tang, and Wei Hu. Heuristic for con-
strained two-dimensional three-staged patterns. Journal of the Operational
Research Society, 66(4):647–656, April 2015.

[CF11] Christoforos Charalambous and Krzysztof Fleszar. A constructive bin-
oriented heuristic for the two-dimensional bin packing problem with guil-
lotine cuts. Computers & Operations Research, 38(10):1443–1451, October
2011.

[CFL01] Qun Chen, Michael C Ferris, and Jeff Linderoth. Fatcop 2.0: Advanced
features in an opportunistic mixed integer programming solver. Annals of
Operations Research, 103(1-4):17–32, 2001.

[CGH08] Y. Cui, T. Gu, and W. Hu. An algorithm for the constrained two-
dimensional rectangular multiple identical large object placement problem.
Optimization Methods and Software, 23(3):375–393, June 2008.

[CGM+18] Liron Cohen, Matias Greco, Hang Ma, Carlos Hernandez, Ariel Felner,
TK Satish Kumar, and Sven Koenig. Anytime focal search with appli-
cations. In IJCAI, pages 1434–1441, 2018.

[CGP12] Chetan Chauhan, Ravindra Gupta, and Kshitij Pathak. Survey of methods
of solving tsp along with its implementation using dynamic programming
approach. International journal of computer applications, 52(4), 2012.

[CHC00] V.-D. Cung, M. Hifi, and B. Le Cun. Constrained two-dimensional cut-
ting stock problems a best-first branch-and-bound algorithm. International
Transactions in Operational Research, 7(3):185–210, 2000.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

[CMT04] Sébastien Cahon, Nordine Melab, and E-G Talbi. Paradiseo: A framework
for the reusable design of parallel and distributed metaheuristics. Journal
of heuristics, 10(3):357–380, 2004.

[Cou06] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In International conference on computers and games, pages 72–83.
Springer, 2006.

94

[CSVV19] François Clautiaux, Ruslan Sadykov, François Vanderbeck, and Quentin
Viaud. Pattern-based diving heuristics for a two-dimensional guillotine
cutting-stock problem with leftovers. EURO Journal on Computational Op-
timization, 7(3):265–297, 2019.

[CvH13] Andre A Cire and Willem-Jan van Hoeve. Multivalued decision diagrams
for sequencing problems. Operations Research, 61(6):1411–1428, 2013.

[CW77] Nicos Christofides and Charles Whitlock. An Algorithm for Two-
Dimensional Cutting Problems. Operations Research, 25(1):30–44, February
1977.

[CYC13] Yaodong Cui, Liu Yang, and Qiulian Chen. Heuristic for the rectangular
strip packing problem with rotation of items. Computers & Operations
Research, 40(4):1094–1099, April 2013.

[CYC16] Yaodong Cui, Yi Yao, and Yi-Ping Cui. Hybrid approach for the two-
dimensional bin packing problem with two-staged patterns. International
Transactions in Operational Research, 23(3):539–549, 2016.

[CYZ18] Yi-Ping Cui, Yi Yao, and Defu Zhang. Applying triple-block patterns in
solving the two-dimensional bin packing problem. Journal of the Operational
Research Society, 69(3):402–415, March 2018.

[CZ13] Yaodong Cui and Zhigang Zhao. Heuristic for the rectangular two-
dimensional single stock size cutting stock problem with two-staged pat-
terns. European Journal of Operational Research, 231(2):288–298, December
2013.

[CZC17] Yi-Ping Cui, Yongwu Zhou, and Yaodong Cui. Triple-solution approach for
the strip packing problem with two-staged patterns. Journal of Combina-
torial Optimization, 34(2):588–604, August 2017.

[DCGT04] Federico Della Croce, Marco Ghirardi, and Roberto Tadei. Recovering beam
search: Enhancing the beam search approach for combinatorial optimization
problems. Journal of Heuristics, 10(1):89–104, 2004.

[DCT02] Federico Della Croce and Vincent T’kindt. A recovering beam search algo-
rithm for the one-machine dynamic total completion time scheduling prob-
lem. Journal of the Operational Research Society, 53(11):1275–1280, 2002.

[DG97] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooper-
ative learning approach to the traveling salesman problem. IEEE Transac-
tions on evolutionary computation, 1(1):53–66, 1997.

[DGS03] Luca Di Gaspero and Andrea Schaerf. Writing local search algorithms us-
ing easylocal++. In Optimization Software Class Libraries, pages 155–175.
Springer, 2003.

95

[DLCCR06] A Djerrah, Bertrand Le Cun, V-D Cung, and Catherine Roucairol. Bob++:
Framework for solving optimization problems with branch-and-bound meth-
ods. In 2006 15th IEEE International Conference on High Performance
Distributed Computing, pages 369–370. IEEE, 2006.

[DLM12] Mohammad Dolatabadi, Andrea Lodi, and Michele Monaci. Exact algo-
rithms for the two-dimensional guillotine knapsack. Computers & Opera-
tions Research, 39(1):48–53, January 2012.

[DMC91] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system:
An autocatalytic optimizing process. Technical Report, 1991.

[DMC+96] Marco Dorigo, Vittorio Maniezzo, Alberto Colorni, et al. Ant system: opti-
mization by a colony of cooperating agents. IEEE Transactions on Systems,
man, and cybernetics, Part B: Cybernetics, 26(1):29–41, 1996.

[dNdQJ19] Oliviana Xavier do Nascimento, Thiago Alves de Queiroz, and Leonardo
Junqueira. A MIP-CP based approach for two- and three-dimensional cut-
ting problems with staged guillotine cuts. Annals of Operations Research,
November 2019.

[DRB19] Marko Djukanovic, Günther R Raidl, and Christian Blum. Anytime algo-
rithms for the longest common palindromic subsequence problem. Comput-
ers & Operations Research, page 104827, 2019.

[EGM94] Laureano F Escudero, Monique Guignard, and Kavindra Malik. A la-
grangian relax-and-cut approach for the sequential ordering problem with
precedence relationships. Annals of Operations Research, 50(1):219–237,
1994.

[EPH01] Jonathan Eckstein, Cynthia A Phillips, and William E Hart. Pico: An
object-oriented framework for parallel branch and bound. In Studies in
Computational Mathematics, volume 8, pages 219–265. Elsevier, 2001.

[ES02] Stefan Edelkamp and Patrick Stiegeler. Implementing heapsort with (n
log n-0.9 n) and quicksort with (n log n+ 0.2 n) comparisons. Journal of
Experimental Algorithmics (JEA), 7:5, 2002.

[ES11] Stefan Edelkamp and Stefan Schroedl. Heuristic search: theory and appli-
cations. Elsevier, 2011.

[Esc88] Laureano F Escudero. An inexact algorithm for the sequential ordering
problem. European Journal of Operational Research, 37(2):236–249, 1988.

[EW14] Stefan Edelkamp and Armin Weiß. Quickxsort: Efficient sorting with n
logn- 1.399n+ o (n) comparisons on average. In International Computer
Science Symposium in Russia, pages 139–152. Springer, 2014.

[FHZ98] D. Fayard, M. Hifi, and V. Zissimopoulos. An efficient approach for large-
scale two-dimensional guillotine cutting stock problems. Journal of the Op-
erational Research Society, 49(12):1270–1277, December 1998.

96

[FK05] David Furcy and Sven Koenig. Limited discrepancy beam search. In IJCAI,
pages 125–131, 2005.

[FL20a] Florian Fontan and Luc Libralesso. PackingSolver: a solver for Packing
Problems. arXiv:2004.02603 [cs], April 2020. arXiv: 2004.02603.

[FL20b] Florian Fontan and Luc Libralesso. PackingSolver: a tree search-based solver
for two-dimensional two-and three-staged guillotine packing problems. work-
ing paper or preprint, April 2020.

[Fle13] Krzysztof Fleszar. Three insertion heuristics and a justification improvement
heuristic for two-dimensional bin packing with guillotine cuts. Computers
& Operations Research, 40(1):463–474, January 2013.

[FMT16] Fabio Furini, Enrico Malaguti, and Dimitri Thomopulos. Modeling Two-
Dimensional Guillotine Cutting Problems via Integer Programming. IN-
FORMS Journal on Computing, 28(4):736–751, October 2016.

[Fon19] Florian Fontan. Theoretical and practical contributions to star observa-
tion scheduling problems. PhD thesis, November 2019. Publication Title:
http://www.theses.fr.

[FR02] Paola Festa and Mauricio GC Resende. Grasp: An annotated bibliography.
In Essays and surveys in metaheuristics, pages 325–367. Springer, 2002.

[FS97] Sándor P. Fekete and Jörg Schepers. A new exact algorithm for general or-
thogonal d-dimensional knapsack problems. In Rainer Burkard and Gerhard
Woeginger, editors, Algorithms — ESA ’97, Lecture Notes in Computer Sci-
ence, pages 144–156, Berlin, Heidelberg, 1997. Springer.

[FTP92] Marie T Fiala Timlin and William R Pulleyblank. Precedence constrained
routing and helicopter scheduling: heuristic design. Interfaces, 22(3):100–
111, 1992.

[GBD+14] Frédéric Gardi, Thierry Benoist, Julien Darlay, Bertrand Estellon, and Ro-
main Megel. Mathematical programming solver based on local search. Wiley
Online Library, 2014.

[GD95] Luca M Gambardella and Marco Dorigo. Ant-q: A reinforcement learning
approach to the traveling salesman problem. In Machine Learning Proceed-
ings 1995, pages 252–260. Elsevier, 1995.

[GD97] Luca Maria Gambardella and Marco Dorigo. Has-sop: Hybrid ant system
for the sequential ordering problem. Technical Report IDSIA 11-97, 1997.

[GG65] P. C. Gilmore and R. E. Gomory. Multistage Cutting Stock Problems of
Two and More Dimensions. Operations Research, 13(1):94–120, February
1965.

[GKS+12] Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michele Sebag, David Sil-
ver, Csaba Szepesvári, and Olivier Teytaud. The grand challenge of com-
puter go: Monte carlo tree search and extensions. Communications of the
ACM, 55(3):106–113, 2012.

97

[GL06] Wasu Glankwamdee and JT Linderoth. Mw: A software framework for
combinatorial optimization on computational grids. Parallel Combinatorial
Optimization, 58:239, 2006.

[GM03] Francesca Guerriero and Marco Mancini. A cooperative parallel rollout al-
gorithm for the sequential ordering problem. Parallel Computing, 29(5):663–
677, 2003.

[GMMT20] Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A
computationally efficient branch-and-bound algorithm for the permutation
flow-shop scheduling problem. European Journal of Operational Research,
2020.

[GMW12] Luca Maria Gambardella, Roberto Montemanni, and Dennis Weyland. An
enhanced ant colony system for the sequential ordering problem. In Opera-
tions Research Proceedings 2011, pages 355–360. Springer, 2012.

[GP05] Marco Ghirardi and Chris N Potts. Makespan minimization for scheduling
unrelated parallel machines: A recovering beam search approach. European
Journal of Operational Research, 165(2):457–467, 2005.

[GR15] Luis Gouveia and Mario Ruthmair. Load-dependent and precedence-based
models for pickup and delivery problems. Computers & Operations Research,
63:56–71, 2015.

[GRB15] Uli Golle, Franz Rothlauf, and Nils Boysen. Iterative beam search for car
sequencing. Annals of Operations Research, 226(1):239–254, 2015.

[GS11] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action
value estimation in computer go. Artificial Intelligence, 175(11):1856–1875,
2011.

[Hel17] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for
constrained traveling salesman and vehicle routing problems. Roskilde:
Roskilde University, 2017.

[Her04] István T Hernádvölgyi. Solving the sequential ordering problem with auto-
matically generated lower bounds. In Operations Research Proceedings 2003,
pages 355–362. Springer, 2004.

[HG95] William D Harvey and Matthew L Ginsberg. Limited discrepancy search.
In IJCAI (1), pages 607–615, 1995.

[HHLBS09] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle.
Paramils: an automatic algorithm configuration framework. Journal of Ar-
tificial Intelligence Research, 36:267–306, 2009.

[Hif97] Mhand Hifi. An improvement of viswanathan and bagchi’s exact algorithm
for constrained two-dimensional cutting stock. Computers & Operations
Research, 24(8):727–736, August 1997.

98

[HM09] Mhand Hifi and Rym M’Hallah. Beam search and non-linear programming
tools for the circular packing problem. International Journal of Mathematics
in Operational Research, 1(4):476–503, January 2009.

[HMS08] Mhand Hifi, Rym M’Hallah, and Toufik Saadi. Algorithms for the Con-
strained Two-Staged Two-Dimensional Cutting Problem. INFORMS Jour-
nal on Computing, 20(2):212–221, January 2008.

[HNOS12] Mhand Hifi, Stephane Negre, Rachid Ouafi, and Toufik Saadi. A paral-
lel algorithm for constrained two-staged two-dimensional cutting problems.
Computers & Industrial Engineering, 62(1):177–189, February 2012.

[HNR68] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[Hop00] Eva Hopper. Two-dimensional packing utilising evolutionary algorithms and
other meta-heuristic methods. PhD Thesis, University of Wales. Cardiff,
2000.

[HR01] Mhand Hifi and Catherine Roucairol. Approximate and Exact Algorithms
for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock
Problems. Journal of Combinatorial Optimization, 5(4):465–494, December
2001.

[HT01] E Hopper and B. C. H Turton. An empirical investigation of meta-heuristic
and heuristic algorithms for a 2D packing problem. European Journal of
Operational Research, 128(1):34–57, January 2001.

[HZ07] Eric A Hansen and Rong Zhou. Anytime heuristic search. Journal of Arti-
ficial Intelligence Research, 28:267–297, 2007.

[JSP+17] J Jamal, G Shobaki, Vassilis Papapanagiotou, Luca Maria Gambardella, and
Roberto Montemanni. Solving the sequential ordering problem using branch
and bound. In 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1–9. IEEE, 2017.

[KL02] Sven Koenig and Maxim Likhachev. Dˆ* lite. Aaai/iaai, 15, 2002.

[Kor85] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial intelligence, 27(1):97–109, 1985.

[Kor93] Richard E Korf. Linear-space best-first search. Artificial Intelligence,
62(1):41–78, 1993.

[Kor96] Richard E Korf. Improved limited discrepancy search. In AAAI/IAAI, Vol.
1, pages 286–291, 1996.

[Krö95] Berthold Kröger. Guillotineable bin packing: A genetic approach. European
Journal of Operational Research, 84(3):645–661, 1995.

99

[Lan92] Pat Langley. Systematic and nonsystematic search strategies. In Artificial
Intelligence Planning Systems, pages 145–152. Elsevier, 1992.

[LBCJ20] Luc Libralesso, Abdel-Malik Bouhassoun, Hadrien Cambazard, and Vincent
Jost. Tree searches for the Sequential Ordering Problem. working paper or
preprint, January 2020.

[LF20a] Luc Libralesso and Florian Fontan. An anytime tree search algorithm for
the 2018 ROADEF/EURO challenge glass cutting problem. working paper
or preprint, April 2020.

[LF20b] Luc Libralesso and Florian Fontan. An anytime tree search algorithm for the
2018 ROADEF/EURO challenge glass cutting problem. arXiv:2004.00963
[cs], April 2020. arXiv: 2004.00963.

[LIB10] Manuel López-Ibáñez and Christian Blum. Beam-aco for the travelling
salesman problem with time windows. Computers & operations research,
37(9):1570–1583, 2010.

[Lib20] Luc Libralesso. Mixed Integer Programming formulations for the balanced
Traveling Salesman Problem with a lexicographic objective. working paper
or preprint, May 2020.

[LISD16] Manuel López-Ibáñez, Thomas Stützle, and Marco Dorigo. Ant colony opti-
mization: A component-wise overview. Handbook of heuristics, pages 1–37,
2016.

[LJS+19] Luc Libralesso, Vincent Jost, Khadija Hadj Salem, Florian Fontan, and
Frédéric Maffray. Study on partial flexible job-shop scheduling problem
under tooling constraints: complexity and related problems. 2019.

[LM03] Andrea Lodi and Michele Monaci. Integer linear programming models for
2-staged two-dimensional Knapsack problems. Mathematical Programming,
94(2):257–278, January 2003.

[LMP17] Andrea Lodi, Michele Monaci, and Enrico Pietrobuoni. Partial enumera-
tion algorithms for Two-Dimensional Bin Packing Problem with guillotine
constraints. Discrete Applied Mathematics, 217:40–47, January 2017.

[LMV04] Andrea Lodi, Silvano Martello, and Daniele Vigo. Models and Bounds for
Two-Dimensional Level Packing Problems. Journal of Combinatorial Opti-
mization, 8(3):363–379, September 2004.

[LO95] Gilbert Laporte and Ibrahim H Osman. Routing problems: A bibliography.
Annals of Operations Research, 61(1):227–262, 1995.

[Man99] Vittorio Maniezzo. Exact and approximate nondeterministic tree-search
procedures for the quadratic assignment problem. INFORMS journal on
computing, 11(4):358–369, 1999.

[Mar98] Ambros Marzetta. ZRAM: A library of parallel search algorithms and its
use in enumeration and combinatorial optimization. Citeseer, 1998.

100

[MMDC+12] Marco Mojana, Roberto Montemanni, Gianni Di Caro, Luca M Gam-
bardella, and P Luangpaiboon. A branch and bound approach for the
sequential ordering problem. Lecture Notes in Management Science, 4:266–
273, 2012.

[MP10] Reinaldo Morabito and Vitória Pureza. A heuristic approach based on
dynamic programming and and/or-graph search for the constrained two-
dimensional guillotine cutting problem. Annals of Operations Research,
179(1):297–315, September 2010.

[MSS99] Joao P Marques-Silva and Karem A Sakallah. Grasp: A search algorithm
for propositional satisfiability. IEEE Transactions on Computers, 48(5):506–
521, 1999.

[MSVH18] Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. Minicp: A
lightweight solver for constraint programming, 2018.

[MSZ+17] David R Morrison, Jason J Sauppe, Wenda Zhang, Sheldon H Jacobson, and
Edward C Sewell. Cyclic best first search: Using contours to guide branch-
and-bound algorithms. Naval Research Logistics (NRL), 64(1):64–82, 2017.

[MV98] Silvano Martello and Daniele Vigo. Exact Solution of the Two-Dimensional
Finite Bin Packing Problem. Management Science, 44(3):388–399, March
1998.

[NPC08] Napoleão Nepomuceno, Plácido Pinheiro, and André L. V. Coelho. A Hy-
brid Optimization Framework for Cutting and Packing Problems. In Car-
los Cotta and Jano van Hemert, editors, Recent Advances in Evolutionary
Computation for Combinatorial Optimization, Studies in Computational In-
telligence, pages 87–99. Springer, Berlin, Heidelberg, 2008.

[OF90] JoséFernando Oliveira and JoséSoeiro Ferreira. An improved version of
Wang’s algorithm for two-dimensional cutting problems. European Journal
of Operational Research, 44(2):256–266, January 1990.

[OM88] Peng Si Ow and Thomas E Morton. Filtered beam search in scheduling.
The International Journal Of Production Research, 26(1):35–62, 1988.

[Poh70] Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial
intelligence, 1(3-4):193–204, 1970.

[PR07] Jakob Puchinger and Günther R. Raidl. Models and algorithms for three-
stage two-dimensional bin packing. European Journal of Operational Re-
search, 183(3):1304–1327, December 2007.

[PRCLF12] José Antonio Parejo, Antonio Ruiz-Cortés, Sebastián Lozano, and Pablo
Fernandez. Metaheuristic optimization frameworks: a survey and bench-
marking. Soft Computing, 16(3):527–561, 2012.

101

[PRG+03] José Antonio Parejo, Jesús Racero, Fernando Guerrero, Terence Kwok, and
Kate A Smith. Fom: A framework for metaheuristic optimization. In In-
ternational Conference on Computational Science, pages 886–895. Springer,
2003.

[R+77] D Raj Reddy et al. Speech understanding systems: A summary of results
of the five-year research effort. department of computer science, 1977.

[RG05] Ted K Ralphs and Menal Güzelsoy. The symphony callable library for mixed
integer programming. In The next wave in computing, optimization, and
decision technologies, pages 61–76. Springer, 2005.

[RLT12] Mohamed Ali Rakrouki, Talel Ladhari, and Vincent T’kindt. Coupling ge-
netic local search and recovering beam search algorithms for minimizing the
total completion time in the single machine scheduling problem subject to
release dates. Computers & Operations Research, 39(6):1257–1264, 2012.

[RM94] Alexander Reinefeld and T. Anthony Marsland. Enhanced iterative-
deepening search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16(7):701–710, 1994.

[RR16] Mauricio GC Resende and Celso C Ribeiro. Optimization by GRASP.
Springer, 2016.

[RTR10] Silvia Richter, Jordan Tyler Thayer, and Wheeler Ruml. The joy of for-
getting: Faster anytime search via restarting. In ICAPS, pages 137–144,
2010.

[Rus92] Stuart Russell. Efficient memory-bounded search methods. ECAI-1992,
Vienna, Austria, 1992.

[Sal02] Matthew J Saltzman. Coin-or: an open-source library for optimization.
In Programming languages and systems in computational economics and fi-
nance, pages 3–32. Springer, 2002.

[SAVdC10] Elsa Silva, Filipe Alvelos, and J. M. Valério de Carvalho. An inte-
ger programming model for two- and three-stage two-dimensional cutting
stock problems. European Journal of Operational Research, 205(3):699–708,
September 2010.

[SB99] Ihsan Sabuncuoglu and M Bayiz. Job shop scheduling with beam search.
European Journal of Operational Research, 118(2):390–412, 1999.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[SC99] Francis Sourd and Philippe Chrétienne. Fiber-to-object assignment heuris-
tics. European Journal of Operational Research, 117(1):1–14, 1999.

[SE05] Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-
clause minimization. SAT, 2005(53):1–2, 2005.

102

[SFIH98] Yuji Shinano, Tetsuya Fujie, Yoshiko Ikebe, and Ryuichi Hirabayashi. Solv-
ing the maximum clique problem using pubb. In Proceedings of the First
Merged International Parallel Processing Symposium and Symposium on
Parallel and Distributed Processing, pages 326–332. IEEE, 1998.

[SG13] Kenneth Sörensen and Fred Glover. Metaheuristics. Encyclopedia of opera-
tions research and management science, 62:960–970, 2013.

[SGV04] Sven Spieckermann, Kai Gutenschwager, and Stefan Voß. A sequential or-
dering problem in automotive paint shops. International journal of produc-
tion research, 42(9):1865–1878, 2004.

[SH98] Thomas Stützle and Holger Hoos. Improvements on the ant-system: In-
troducing the max-min ant system. In Artificial neural nets and genetic
algorithms, pages 245–249. Springer, 1998.

[SJ15] Ghassan Shobaki and Jafar Jamal. An exact algorithm for the sequential
ordering problem and its application to switching energy minimization in
compilers. Computational Optimization and Applications, 61(2):343–372,
2015.

[Ski17] Rafał Skinderowicz. An improved ant colony system for the sequential or-
dering problem. Computers & Operations Research, 86:1–17, 2017.

[SLT06] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode, 2006.

[SM03] Dong-Il Seo and Byung-Ro Moon. A hybrid genetic algorithm based on
complete graph representation for the sequential ordering problem. In Ge-
netic and Evolutionary Computation Conference, pages 669–680. Springer,
2003.

[Sol08] Christine Solnon. Combining two pheromone structures for solving the car
sequencing problem with ant colony optimization. European Journal of Op-
erational Research, 191(3):1043–1055, 2008.

[Sol10] Christine Solnon. Ant colony optimization and constraint programming. Wi-
ley Online Library, 2010.

[Sör15] Kenneth Sörensen. Metaheuristics—the metaphor exposed. International
Transactions in Operational Research, 22(1):3–18, 2015.

[SSG17] Kenneth Sorensen, Marc Sevaux, and Fred Glover. A history of metaheuris-
tics. arXiv preprint arXiv:1704.00853, 2017.

[STDC18] Lei Shang, Vincent T’Kindt, and Federico Della Croce. The memoriza-
tion paradigm: Branch & memorize algorithms for the efficient solution of
sequencing problems. preprint, 2018.

[SVP+19] Ruslan Sadykov, François Vanderbeck, Artur Pessoa, Issam Tahiri, and Ed-
uardo Uchoa. Primal heuristics for branch and price: The assets of diving
methods. INFORMS Journal on Computing, 31(2):251–267, 2019.

103

[TDCE04] Vincent T’kindt, Federico Della Croce, and Carl Esswein. Revisiting branch
and bound search strategies for machine scheduling problems. Journal of
Scheduling, 7(6):429–440, 2004.

[Ter04] Fabrice Tercinet. Méthodes arborescentes pour la résolution des problèmes
d’ordonnancement, conception d’un outil d’aide au développement. PhD
thesis, Tours, 2004.

[TH95] Stefan Tschöke and Norbert Holthöfer. A new parallel approach to the con-
strained two-dimensional cutting stock problem. In Afonso Ferreira and José
Rolim, editors, Parallel Algorithms for Irregularly Structured Problems, Lec-
ture Notes in Computer Science, pages 285–300, Berlin, Heidelberg, 1995.
Springer.

[TJ10] Anne M Taylor and Noo Li Jeon. Micro-scale and microfluidic devices for
neurobiology. Current opinion in neurobiology, 20(5):640–647, 2010.

[TP95] Stefan Tschöke and Thomas Polzer. Portable parallel branch-and-bound
library: User manual. Technical Report, 500, 1995.

[VAC16] Satya Gautam Vadlamudi, Sandip Aine, and Partha Pratim Chakrabarti.
Anytime pack search. Natural Computing, 15(3):395–414, 2016.

[VDBSHG11] Jur Van Den Berg, Rajat Shah, Arthur Huang, and Ken Goldberg. Anytime
nonparametric a. In Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, 2011.

[VFD05] Stefan Voßs, Andreas Fink, and Cees Duin. Looking ahead with the pilot
method. Annals of Operations Research, 136(1):285–302, 2005.

[VGAC12] Satya Gautam Vadlamudi, Piyush Gaurav, Sandip Aine, and Partha Pratim
Chakrabarti. Anytime column search. In Australasian Joint Conference on
Artificial Intelligence, pages 254–265. Springer, 2012.

[VST05] François Vanderbeck, R Sadykov, and I Tahiri. Bapcod–a generic branch-
and-price code. See http://wiki. bordeaux. inria. fr/realopt, 2005.

[VU19] André Soares Velasco and Eduardo Uchoa. Improved state space relaxation
for constrained two-dimensional guillotine cutting problems. European Jour-
nal of Operational Research, 272(1):106–120, January 2019.

[Wal97] Toby Walsh. Depth-bounded discrepancy search. In IJCAI, volume 97,
pages 1388–1393, 1997.

[Wan83] P. Y. Wang. Two Algorithms for Constrained Two-Dimensional Cutting
Stock Problems. Operations Research, 31(3):573–586, June 1983.

[Wil10] Christopher Wilt. Informed backtracking beam search. Conference proceed-
ings, 2010.

[WL15] Lijun Wei and Andrew Lim. A bidirectional building approach for the 2D
constrained guillotine knapsack packing problem. European Journal of Op-
erational Research, 242(1):63–71, April 2015.

104

[WLZ13] Ning Wang, Andrew Lim, and Wenbin Zhu. A multi-round partial beam
search approach for the single container loading problem with shipment
priority. International Journal of Production Economics, 145(2):531–540,
October 2013.

[WTZL14] Lijun Wei, Tian Tian, Wenbin Zhu, and Andrew Lim. A block-based layer
building approach for the 2D guillotine strip packing problem. European
Journal of Operational Research, 239(1):58–69, November 2014.

[WWKT14] Moon Hong Wun, Li-Pei WongT, Ahamad Tajudin Khader, and Tien-Ping
Tan. A bee colony optimization with automated parameter tuning for se-
quential ordering problem. In 2014 4th World Congress on Information and
Communication Technologies (WICT 2014), pages 314–319. IEEE, 2014.

[XHHLB08] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla:
portfolio-based algorithm selection for sat. Journal of artificial intelligence
research, 32:565–606, 2008.

[XRLS05] Yan Xu, Ted K Ralphs, Laszlo Ladányi, and Matthew J Saltzman. Alps:
A framework for implementing parallel tree search algorithms. In The next
wave in computing, optimization, and decision technologies, pages 319–334.
Springer, 2005.

[ZH05] Rong Zhou and Eric A Hansen. Beam-stack search: Integrating backtracking
with beam search. In ICAPS, pages 90–98, 2005.

[Zha98] Weixiong Zhang. Complete anytime beam search. In AAAI/IAAI, pages
425–430, 1998.

105

A
PackingSolver: a solver for guillotine packing problems

This chapter presents a submitted article on an academic/industrial continuation of the
EURO/ROADEF 2018 challenge with Florian Fontan. We investigate various guillotine
Cutting & Packing problems and evaluate the performance of the ideas presented in Chap-
ter 3.

In Chapter 3, we proposed an anytime tree search algorithm for the 2018 ROADEF/EURO
challenge glass cutting problem1. The resulting program was ranked first among 64 par-
ticipants. In this article, we generalize it and show that it is not only effective for the
specific problem it was originally designed for, but is also very competitive and even re-
turns state-of-the-art solutions on a large variety of Cutting and Packing problems from
the literature. We adapted the algorithm for two-dimensional Bin Packing, Multiple Knap-
sack, and Strip Packing Problems, with two- or three-staged exact or non-exact guillotine
cuts, the orientation of the first cut being imposed or not, and with or without item rota-
tion. The combination of efficiency, ability to provide good solutions fast, simplicity and
versatility makes it particularly suited for industrial applications, which require quickly
developing algorithms implementing several business-specific constraints. The algorithm
is implemented in a new software package called PackingSolver.

The 2018 ROADEF/EURO challenge featured an industrial glass cutting problem aris-
ing at the French company Saint Gobain. We proposed an anytime tree search algorithm
that was ranked first in the final phase of the challenge. They showed that the algorithm
performs very well on this specific variant with the specific instances considered. Indeed,
some of the industrial constraints of the problem seem to favor this kind of constructive
approach. In particular, the problem includes precedence constraints, which highly pe-
nalize other approaches such as local search, dynamic programming, mixed-integer linear
programming or column generation. Therefore, it was not obvious a priori whether the al-
gorithm would be competitive on other variants. In this article, we show that even on pure
Packing Problems from the literature, it is competitive compared to the other dedicated
algorithms, and is even able to return state-of-the-art solutions on several variants.

Even though most of the new constraints taken into account integrate naturally within
the algorithm, several improvements need to be made to make it efficient on the large
variety of problems and instances from the literature: two new guide functions are proposed
to deal with instances with different item distributions; an additional guide is designed for

1https://www.roadef.org/challenge/2018/en/index.php

107

https://www.roadef.org/challenge/2018/en/index.php

J1
J2

J3
J4

(a) Non-guillotine pattern

J1

J2

J3

J4

J5

(b) Two-staged exact guillotine pattern, first
stage vertical

J1

J2

J3

J4

J5

(c) Two-staged non-exact guillotine pattern,
first stage vertical

J1

J2

J3 J4

J5 J6

J7

(d) Three-staged exact guillotine pattern,
first stage vertical

Figure A.1: Pattern type examples

the Knapsack objective; and some flexibility has been introduced in the symmetry breaking
strategy.

We proposed an efficient algorithm for a specific problem with specific constraints and
instances. Here, we propose an efficient approach which should be useful for almost any
(guillotine for now) Packing Problem. Also, as discussed in Section A.5, experimenting on
all these variants greatly improved our understanding of the effectiveness of MBA* and
other tree search algorithms.

A.1 Introduction

We consider two-dimensional guillotine Packing Problems: one has to pack rectangles
of various sizes into larger bins while only edge-to-edge cuts are allowed. In a solution,
guillotine cuts can be partitioned into stages, i.e. series of parallel cuts, and it is common
to limit the number of allowed stages. Here, we restrict to two- or three-staged guillotine
patterns. In both cases, we consider both exact and non-exact variants. In the non-exact
variant, an additional cut is allowed to separate items from waste. Figure A.1 illustrates
the different pattern types.

We consider the three main objectives studied in the literature: Bin Packing, Knapsack
and Strip Packing. In Bin Packing and Strip Packing Problems, all items need to be
produced. In Bin Packing Problems, the number of used bins is minimized, while in Strip
Packing Problems, there is only one container with one infinite dimension and the objective
is to minimize the length used in this dimension. In Knapsack Problems, the number of
containers is limited, every item has a profit and the total profit of the packed items is
maximized.

108

Finally, for each variant, we consider the oriented case where item rotation is not
allowed and non-oriented case where it is.

Throughout the article, the different variants are named following our notations illus-
trated with the following examples:

• BPP-O: (non-guillotine) Bin Packing Problem, Oriented

• G-BPP-R: Guillotine cuts, Bin Packing Problem, Rotation

• 2G-KP-O: 2-staged exact guillotine cuts, first cut horizontal or vertical, Knapsack
Problem, Oriented

• 3NEGH-SPP-O: 3-staged non-exact guillotine cuts, first cut horizontal, Strip Packing
Problem, Oriented

We also use the following vocabulary: a k-cut is a cut performed in the k-th stage. Cuts
separate bins into k-th level sub-plates. For example, 1-cuts separate the bin in several
first level sub-plates. S denotes a solution or a node in the search tree (a partial solution).

The following definitions are given for the case where the first cut in the last bin is
vertical, but naturally, adapt to the case where it is horizontal. We call the last first
level sub-plate, the rightmost one containing an item; the last second level sub-plate, the
topmost one containing an item in the last first level sub-plate; and the last third level
sub-plate the rightmost one containing an item in the last second level sub-plate. xprev1 (S)
and xcurr1 (S) are the left and right coordinates of the last first level sub-plate; yprev2 (S)
and ycurr2 (S) are the bottom and top coordinates of the last second level sub-plate; and
xprev3 (S) and xcurr3 (S) are the left and right coordinates of the last third level sub-plate.
Figure A.2 presents a usage example of these definitions. We define the area and the waste
of a solution S as follows:

area(S) =

A + xcurr1 (S)h if S contains all items
A + xprev1 (S)h

+ (xcurr1 (S)− xprev1 (S))yprev2 (S)
+ (xcurr3 (S)− xprev1 (S))(ycurr2 (S)− yprev2 (S)) otherwise

waste(S) = area(S)− item_area(S)

with A the sum of the areas of all but the last bin, h the height of the last bin and
item_area(S) the sum of the area of the items of S. Area and waste are illustrated in
Figure A.2.

A.2 Literature review

Two-dimensional guillotine Packing Problems have been introduced by [GG65] and have
received a lot of attention since. Researchers usually focus on one specific variant or only
on a few ones.

Algorithms are sometimes adapted for both the oriented and the non-oriented cases.
[VU19] developed a heuristic for G-KP-O and G-KP-R, [WTZL14] for G-SPP-O and G-
SPP-R, [CF11], [Fle13] and [CYZ18] for G-BPP-O and G-BPP-R, [LM03] an exact algo-
rithm for 2NEGH-KP-O and 2NEGH-KP-R.

109

J1

J2

J3 J4

xcurr1 = xcurr3xprev1 xprev3

yprev2

ycurr2

Figure A.2: Last bin of a solution which does not contain all items. The area is the whole
hatched part and the waste in the grey hatched part.

Some methods have been designed to work on more variants. [dNdQJ19] developed
an exact algorithm for G-KP-O, 3NEGH-KP-O, 2NEGH-KP-O and the three-dimensional
variants, [BW09] developed a genetic algorithm for G-KP-O, G-KP-R, and the non-guillotine
variants. [ACV+09] and [SAVdC10] respectively developed a heuristic and an exact algo-
rithm for 3NEGH-BPP-O, 3GH-BPP-O, 2NEGH-BPP-O and 2GH-BPP-O, and the non-
oriented cases. [FMT16] introduced a model for G-KP-O and G-SPP-O. [LMV04] proposed
a unified tabu search for two- and three-dimensional Packing Problems. They provide com-
putational experiments for BPP-O and the three-dimensional variant. They also describe
how to adapt the algorithm for several variants such as Strip Packing or Multiple Knapsack.
However, adapting the algorithm requires to provide a heuristic procedure, on which the
efficiency of the algorithm highly relies. We did not find any use of their tabu search in the
subsequent literature. Also, a framework has been proposed by [NPC08]; unfortunately, it
has only been implemented for BPP-O and we did not find any use of their framework in
the subsequent literature either.

Regarding our methodology, even though tree search algorithms have been widely used
to solve Packing Problems, the search algorithm that we implemented does not seem to
have been proposed before. We may notice that many packing algorithms rely on Beam
Search which is relatively close, as discussed in Section A.5. [AHM09b], [HM09], [AHM10]
and [AHN11] implemented it for Circular Packing Problems; [BS10] and [BCMS18] for
Irregular Packing Problems; [WLZ13], [AR14] and [AMS20] for three-dimensional Packing
Problems; and [HNOS12] for 2NEGH-KP-O. However, these Beam Search implementations
significantly differ from our tree search implementation. Most of them do not use a restart
strategy, are block-based approaches and use probing (filling partial solutions with a greedy
heuristic) to evaluate the quality of nodes. Furthermore, they are globally more complex
than our tree search implementation, suggesting that we better captured the key ideas that
make tree search algorithms efficient for Packing Problems.

A.3 Algorithm description

We propose an anytime tree search algorithm.
Anytime is a terminology usually found in automated planning and scheduling (AI

planning) communities. It means that the algorithm can be stopped at any time and still
provides good solutions. In other words, it produces feasible solutions quickly and improves
them over time (as classical meta-heuristics do).

110

J1

J2

J3 J4

(a)

J1

J2

J3 J4

(b)

Figure A.3: Solution (a) dominates solution (b) because the hatched area will not be used

Tree search algorithms represent the solution space as an implicit tree called branching
scheme and explore it completely in the case of exact methods or partially in the case of
heuristic methods. The branching scheme is described in Section A.3.1 and the tree search
algorithm in Section A.3.2.

A.3.1 Branching scheme

We describe the branching scheme for the 3-staged cases with vertical cuts in the first
stage. For the 2-staged cases, we merely impose the position of the first cut to be at the
end of the bin and adjust the computation of parameters accordingly; and when the cuts
in the first stage are horizontal, we simply adapt the computation of coordinates.

The branching scheme is rather straightforward. The root node is the empty solution
without any items, and at each stage, a new item is added. All items that do not belong
to the current node are considered. However, items in a solution are inserted according
to the following order: rightmost first level sub-plates first; within a first level sub-plate,
bottommost second level sub-plates first; and within a second level sub-plate, rightmost
items first. Thus, a new item can be inserted in a new bin; in a new first level sub-plate
to the right of the current one; in a new second-level sub-plate above the current one; in a
new third-level sub-plate, to the right of the last added item. If the cuts of the first stage
can be vertical or horizontal, then two different insertions in a new bin are considered: an
insertion in a new bin with vertical cuts in the first stage, and an insertion in a new bin
with horizontal cuts in the first stage.

To handle exact guillotine cuts, we simply fix the position of the 2-cut above an item
inserted in a new bin, first or second level sub-plate, i.e. the next items inserted in the
same second level sub-plate will only be those of the same height.

Item rotation or not is naturally handled in the branching scheme.

To reduce the size of the tree, we apply some simple dominance rules.
First, if an item can be inserted in the current bin, we do not consider insertions in

a new bin; and if an item can be inserted in the current first (resp. second) level sub-
plate without increasing the position of its left 1-cut (resp. top 2-cut), we do not consider
insertions in a new first (resp. second) level sub-plate.

Then, if item rotation is allowed, some insertions can be discarded as illustrated in
Figure A.3.

We also impose an order on identical items.
Finally, we add the following symmetry breaking strategy: a k-level sub-plate is forbid-

den to contain an item with a smaller index than the previous k level sub-plate of the same

111

(k − 1)-level sub-plate. The symmetry breaking strategy is controlled with a parameter
s, 1 ≤ s ≤ 4. If s = k, then the symmetry breaking strategy is only used with k′ level
sub-plates, k′ ≥ k. For example, if s = 4, no symmetry breaking strategy is used. The
choice of the value of s is discussed in Section A.5.

A.3.2 Tree search algorithm

The tree described in the previous section is too large to be entirely explored. Therefore,
we use a tree search algorithm that we called Memory Bounded A* (MBA*) to explore
the most interesting parts in priority. The pseudo-code is given in Algorithm A.1. MBA*
starts with a queue containing only the root node. At each iteration, the best node is
extracted from the queue and its children are added to the queue. If the size of the queue
goes over a pre-defined threshold value, the worst nodes are discarded. We start with a
threshold of 2, and each time the queue becomes empty, we start over with a threshold
multiplied by the growth factor f . We choose f = 1.5 as discussed in Section A.5.

Algorithm A.1: Memory Bounded A* (MBA*)
1 fringe ← {root};
2 while fringe 6= ∅ and time < timelimit do
3 n← extractBest(fringe);
4 fringe← fringe \ {n};
5 forall v ∈ neighbours(n) do
6 fringe← fringe ∪ {v};
7 end
8 while |fringe| > D do
9 n← extractWorst(fringe);

10 fringe← fringe \ {n};
11 end
12 end

The function used to define better and worse is called a guide. The lower the value of
the guide function is, the better the solution. For Bin Packing and Strip Packing Problems,
we designed the following guide functions:

c0(S) = waste_percentage(S)

c1(S) =
waste_percentage(S)

mean_item_area(S)

c2(S) =
0.1 + waste_percentage(S)

mean_item_area(S)

c3(S) =
0.1 + waste_percentage(S)

mean_squared_item_area(S)

with

• waste_percentage(S) = waste(S)/area(S);

• mean_item_area(S) the mean area of the items of S;

112

• mean_squared_item_area(S) the mean squared area of the items of S.

For Knapsack Problems, we use the following guide function:

c4(S) =
area(S)

profit(S)

with profit(S) the sum of profit of the items of S.
The importance and design of these guide functions are discussed in Section A.5.

A.4 Computational experiments

The algorithm has been implemented in C++ in a new software package called Packing-
Solver. The code is available online2. The repository also contains all the scripts used to
conduct the experiments so that results can be reproduced. The results presented above
have been obtained with PackingSolver 0.23 running on a personal computer with an Intel
Core i5-8500 CPU @ 3.00GHz × 6. We allow running up to 3 threads with different settings
in parallel. The settings have been chosen following the observations given in Section A.5.
Better settings may exist, we try to reproduce the results one would obtain in a practical
situation where the global characteristics of the instances are known.

We compare the performances of our algorithm with the best algorithms from the
literature for each variant. Due to a large number of problems, we only provide a synthesis
of the results here. However, detailed results are available online4 and the interested reader
is encouraged to have a look at them.

Results are summarized in Tables A.1, A.2 and A.3. The first column of the tables
indicates the article from which the results have been extracted or the parameters we used
for our algorithm. cba indicates a thread with guide function ca and symmetry breaking
parameter b. TL stands for time limit. The time limit has been chosen to yield a good
compromise between computation time and the best solution value. We only indicate the
frequencies of the processors used to evaluate the other algorithms when they significantly
differ from ours, i.e. below 2GHz.

For Bin Packing Problems, the second column contains the total number of bins used
in Table A.1a and the average of the average percentage of waste of each sub-dataset in
Table A.1b. For Knapsack and Strip Packing Problems, it contains the average gap to the
best-known solutions. The third one indicates the average time to best when available, or
the average computation time.

Dataset hifi is a dataset composed of instances from [CW77], [Wan83], [OF90], [TH95],
[FS97], [FHZ98], [Hif97] and [CHC00]. Researchers usually test their algorithms on a
subset of these instances, but often not the same. Dataset bwmv refers to datasets from
[BW87] and [MV98] which are usually used together.

Other datasets are

• beasley1985 from [Bea85]

• fayard1998 from [FHZ98]
2https://github.com/fontanf/packingsolver
3https://github.com/fontanf/packingsolver/releases/tag/0.2
4https://github.com/fontanf/packingsolver/blob/0.2/results_rectangleguillotine.ods

113

https://github.com/fontanf/packingsolver
https://github.com/fontanf/packingsolver/releases/tag/0.2
https://github.com/fontanf/packingsolver/blob/0.2/results_rectangleguillotine.ods

• kroger1995 from [Krö95]

• hopper2000 from [Hop00]

• hopper2001 from [HT01]

• alvarez2002 from [AVPT02]

• morabito2010 from [MP10]

• hifi2012 from [HNOS12]

• velasco2019 from [VU19]

A.4.1 Bin Packing Problems

Results for Bin Packing Problems are summarized in Table A.1. On 2NEGH-BPP-O and
2NEGH-BPP-R, PackingSolver respectively needs fewer bins than the algorithms from
[CZ13] and [CYC16] for the considered datasets. Furthermore, the average time to best
is of the order of a second, which is significantly smaller than the average time reported
for the other algorithms. On 3NEGH-BPP-O, 3GH-BPP-O, and 2NEGH-BPP-O, the
average of the average percentage of waste of PackingSolver is smaller than the one of the
algorithms from [ACV+09]. However, on 2GH-BPP-O, it is greater. Finally, compared to
the algorithms from [PR07] and [ASdC14], it needs more bins, but the average time to best
is two orders of magnitude smaller than the average time reported for those algorithms. We
also note that PackingSolver respectively needs significantly fewer bins on 3NEGH-BPP-O
and 3GH-BPP-O compared to the algorithms from [PR07] and [ASdC14] for 3GH-BPP-O
and 2NEGH-BPP-O,

A.4.2 Knapsack Problems

Results for Knapsack Problems are summarized in Table A.2. We include comparisons with
algorithms designed for the non-staged variants. In these cases, PackingSolver usually fails
to find the best solutions. It seems likely that they often cannot be reached with only
3 stages. However, its average gap to best is generally less than 1% and on datasets
velasco2019 it is even better than the recent algorithm from [VU19]. The same happens
on dataset fayard1998 for G-KP-R, but the algorithm developed by [BW09] seems to
perform significantly worse than more recent algorithms and none of them has been tested
on this dataset.

On 3NEGV-KP-O, the average gap to best of PackingSolver is better than [CCTH15],
but at the expense of longer computation times. For 2NEGH-KP-O, as [AVMTP07], it
finds all the best solutions, but faster. Compared to the algorithm from [HMS08], it
performs slightly worse on dataset alvarez2002 (even if the average gap is 0.0, it fails to
find the best solution on two instances) but better on dataset hifi2012.

On variants 2NEG-KP-R, 2G-KP-O, 2GH-KP-O, and 2GV-KP-O for which [LM03] and
[HR01] developed exact algorithms, PackingSolver finds all optimal solutions in reasonable
computation times.

Note that, to the best of our knowledge, only [CGH08] proposed an algorithm for a
variant of a Multiple Knapsack Problem. However, they consider homogenous T-shaped
patterns which we do not consider in this article.

114

Article / Parameters Total Time (s)

3NEGH-BPP-O, bwmv
PS, c20c22c33, TL 60s 7278 0.790

3GH-BPP-O, bwmv
[PR07] 7325 160.68
PS, c20c22c33, TL 60s 7344 0.808

2NEGH-BPP-O, bwmv
[ASdC14] 7372 29.42
[ASdC14] 7364 84.04
PS, c20c22c33, TL 60s 7391 0.814

2NEGH-BPP-O, hifi
[CZ13] 260 0.19
PS, c32c33c43, TL 10s 255 0.106

2NEGH-BPP-O, alvarez2002
[CZ13] 219 9.5
PS, c32c33c43, TL 10s 218 0.346

2NEGH-BPP-R, bwmv
[CYC16] 7034 20.72
PS, c20c22c33, TL 60s 7029 0.590

(a)

Article / Parameters Waste Time (s)

3NEGH-BPP-O, bwmv
[ACV+09] 26.52
PS, c20c22c33, TL 60s 20.93 0.790

3GH-BPP-O, bwmv
[ACV+09] 26.29
PS, c20c22c33, TL 60s 22.34 0.808

2NEGH-BPP-O, bwmv
[ACV+09] 26.12
PS, c20c22c33, TL 60s 23.21 0.807

2GH-BPP-O, bwmv
[ACV+09] 49.06
PS, c30c32c43, TL 60s 49.45 0.181

(b)

Table A.1: Results on Bin Packing Problems

A.4.3 Strip Packing Problems

Not many variants of guillotine Strip Packing Problems have been studied in the literature;
only G-SPP-O, G-SPP-R, and 2NEGH-SPP-O. This makes comparisons with Packing-
Solver difficult since it is limited to three-staged patterns, and 2NEGH-SPP-O has several
specific structural properties that dedicated algorithms can exploit, but not a more generic
one. We still provide computational experiments for these variants in Table A.3. As ex-
pected, PackingSolver does not perform as well. Still, on dataset bwmv, it returns strictly
better average solutions on 16 out of 50 groups of instances for G-SPP-O and on 14 out
of 50 groups of instances for G-SPP-R than the algorithm from [WTZL14]. To highlight
a bit more the contribution of our algorithm for Strip Packing Problems, we provide a
comparison of the solutions from [LMV04] and from [CZC17] for 2NEGH-SPP-O with the
solutions returned by PackingSolver for 2NEGH-SPP-R, i.e. when item rotation is allowed.
The average solutions returned by PackingSolver are strictly better on each of the 50 groups
of instances of dataset bwmv.

A.5 Discussion

In this section, we discuss some items related to the algorithm.

Growth factor of the queue size threshold: In Section A.3.1, we indicated that we
set the growth factor of the queue size threshold to 1.5. The greater the threshold, the
better the solutions will be, but the longer MBA* will take to terminate. Furthermore, for

115

Article / Parameters Gap Time (s)

G-KP-O, fayard1998
[VU19] 0.00 0.06
PS, 3NEG-KP-O, c24c34, TL 10s 0.16 0.182

G-KP-O, alvarez2002
[WL15] 0.02 21.987
[VU19] 0.00 93.681
PS, 3NEG-KP-O, c24c34, TL 60s 0.48 13.264

G-KP-O, hopper2001
[WL15] 0.31 22.214
PS, 3NEG-KP-O, c24c34, TL 10s 4.69 1.283

G-KP-O, morabito2010
[VU19] 0.01 19.57
PS, 3NEG-KP-O, c24c34, TL 10s 0.17 0.332

G-KP-O, beasley1985
[DLM12] 0.00 1397.738
[WL15] 0.44 20.923
PS, 3NEG-KP-O, c24c34, TL 10s 0.56 0.204

G-KP-O, velasco2019
[VU19] 1.42 165.618
PS, 3NEG-KP-O, c24c34, TL 120s 0.47 34.682

G-KP-R, hopper2001
[WL15] 0.00 5.04
PS, 3NEG-KP-R, c24c34, TL 30s 1.71 8.049

G-KP-R, fayard1998
[BW09] 1.57
PS, 3NEG-KP-R, c24c34, TL 30s 0.00 2.578

G-KP-R, velasco2019
[VU19] 1.05 170.20
PS, 3NEG-KP-R, c24c34, TL 120s 0.51 38.590

3NEGV-KP-O, alvarez2002
[CCTH15] 0.09 2.06
PS, c14c24c34, TL 60s 0.01 11.879

Article / Parameters Gap Time (s)

2NEGH-KP-O, hifi
[AVMTP07] 0.00 0.5
PS, c24c34, TL 3s 0.00 0.032

2NEGH-KP-O, alvarez2002
[HMS08] 0.00 0.2
PS, c24c34, TL 10s 0.00 0.410

2NEGV-KP-O, alvarez2002
[HMS08] 0.00 0.2
PS, c24c34, TL 10s 0.00 0.382

2NEGH-KP-O, hifi2012
[HMS08] 0.26 368.365
PS, c24c34, TL 300s 0.12 138.742

2NEGV-KP-O, hifi2012
[HMS08] 0.24 310.105
PS, c24c34, TL 300s 0.00 121.014

2NEGH-KP-R, hifi
[LM03] (533 MHz) 0.00 34.348
PS, c24c34, TL 3s 0.00 0.161

2G-KP-O, hifi
[HR01] (250 Mhz) 0.00 1.253
PS, c24c34, TL 1s 0.00 0.003

2GH-KP-O, hifi
[HR01] (250 Mhz) 0.00 1.145
PS, c24c34, TL 1s 0.00 0.002

2GV-KP-O, hifi
[HR01] (250 Mhz) 0.00 1.147
PS, c24c34, TL 1s 0.00 0.005

Table A.2: Results on Knapsack Problems

Bin Packing and Strip Packing Problems, full solutions are usually found shortly before
it terminates. Therefore, by choosing a too large value for the growth factor, we take the
risk to reach the time limit having to spend a lot of time with a given threshold without
obtaining any solutions from it. On the other hand, if the growth factor is too small, then
only small thresholds value will be explored and no good solutions will be found. In our
experiments, 1.5 proved to be a good compromise.

Choice of guide functions: The effectiveness of MBA* highly relies on the definition
of its guide function. For MBA*, the guide function should be relevant to compare two
nodes at different stages of the tree. Therefore, the waste-percentage c0 appears much
more relevant than the waste alone for Bin Packing and Strip Packing variants. Guide
function c1 is adapted from c0, but it favours solutions containing larger items. This helps
to avoid situations where all small items are packed in the first bins and the last bins get all

116

Article / Parameters Gap Time (s)

G-SPP-O, kroger1995
[WTZL14] 0.27 22.67
PS, 3NEGH-SPP-O, c20c30c40, TL 30s 3.65 10.416

G-SPP-O, hopper2001
[WTZL14] 0.00 6.267
PS, 3NEGH-SPP-O, c20c30c40, TL 30s 6.75 4.364

G-SPP-O, hopper2000
[WTZL14] 0.00 20.647
PS, 3NEGH-SPP-O, c20c30c40, TL 30s 8.72 5.899

G-SPP-O, bwmv
[WTZL14] 0.15 17.736
PS, 3NEGH-SPP-O, c20c25c36, TL 60s 1.10 12.831

G-SPP-R, kroger1995
[CYC13] 0.00 56
PS, 3NEGH-SPP-R, c20c30c40, TL 30s 1.84 9.716

G-SPP-R, hopper2001
[WTZL14] 0.00 13.466
3NEGH-SPP-R, c20c30c40, TL 30s 3.00 4.153

G-SPP-R, hopper2000
[WTZL14] 0.00 13.465
PS, 3NEGH-SPP-R, c20c30c40, TL 30s 3.30 10.7

G-SPP-R, bwmv
[WTZL14] 0.13 18.253
PS, 3NEGH-SPP-R, c20c25c36, TL 30s 0.58 12.592

Article / Parameters Gap Time (s)

2NEGH-SPP-O, alvarez2002
[CYC13] 0.02 4.78
PS, c14c24c34, TL 30s 1.13 3.726

2NEGH-SPP-O, bwmv
[LMV04] 0.02 66.71
[CZC17] 0.13 1.77
PS, c20c25c36, TL 30s 0.68 0.992

2NEGH-SPP-R, bwmv
[LMV04] 7.96 66.71
[CZC17] 8.08 1.77
PS, c20c25c36, TL 30s 0.00 1.773

Table A.3: Results on Strip Packing Problems

117

the large items, creating large waste areas. Guide function c2 is adapted from c1: indeed,
even if c1 favors large items first, solutions with no waste at all will always be extracted
first, even if they contain only small items. The constant in c2 aims at fixing this behavior
and will lead to better solutions on instances in which optimal solutions contain significant
waste (more than 10%). c3 is adapted from c2 and favours even more large items first. This
guide function is useful for some instances containing several very large items. Finally, c4
is a natural adaption of c0 for Knapsack variants. An experimental comparison of several
guide functions for the 2018 ROADEF/EURO challenge glass cutting problem is presented
in Chapter 3.

Depth of the symmetry breaking strategy: In exact tree search algorithms, it is
usually worth breaking symmetries. However, this is not the case when the tree is not
meant to be explored completely. For example, consider two symmetrical nodes, the first
one normally appearing in the queue, but the second one never being added to the queue
because one of its ancestors has been removed to reduce the size of the queue. If the first
one is not explored because the symmetry has been detected, then this solution will not
be found during the search. How to determine the ideal depth of the symmetry breaking
strategy for an instance is not clear yet. The relative size of the items compared to the bin
might be an influential factor. For the experiments, we chose 2 or 3 as standard values. For
some instances containing many items (more than 1000), only a value of 4 ensures finding
a feasible solution quickly; in contrast, for some knapsack instances with few first-level
sub-plates, a value of 1 gives access to better solutions. An experimental evaluation of the
influence of the symmetry breaking strategy for the 2018 ROADEF/EURO challenge glass
cutting problem is presented in Chapter 3.

MBA* vs Beam Search: Beam Search is another popular tree search algorithm in the
packing literature. Beam Search also starts with a queue containing only the root node.
However, at each iteration, all nodes of the queue are expanded, and as in MBA*, if the
size of the queue goes over a pre-defined threshold, the worst nodes are discarded. Thus,
at each iteration, the queue always contains nodes belonging to the same level of the tree.
Beam Search seems therefore effective when the guide function is relevant to compare nodes
belonging to the same level. This is for example generally not the case in Branch-and-Cut
trees where branching consists in fixing a variable to 0 or 1. With our branching scheme
for Packing Problems, it is easier to compare such solutions, but the guide functions we
presented in Section A.3 make it even possible to compare nodes at different levels of the
search tree. Thus, Beam Search expands many nodes which are not that much interesting,
whereas MBA* always expands only the best current node. An experimental comparison
of MBA* and Beam Search for the 2018 ROADEF/EURO challenge glass cutting problem
is presented in Chapter 3. It shows that MBA* finds significantly better solutions than
the equivalent Beam Search implementation, thus the integration within PackingSolver.

Higher staged guillotine cuts: Our branching scheme generates up to three-staged
patterns. One could wonder whether it could be possible to adapt it for four-staged or
non-staged guillotine patterns. However, if a similar branching scheme seems possible, it
may significantly increase symmetry issues. We believe that this would be prohibitive.

118

MBA* might be used to solve these variants, but new branching schemes need to be
designed.

Item-based vs block-based: Many researchers highlighted the benefits of using block-
based approaches, i.e. inserting several items at each stage of the tree [BJ12, WTZL14,
LMP17]. It is interesting to note that it is not what we implemented, yet our algorithm is
competitive.

A.6 Conclusion and future work

We showed that the algorithm proposed by [LF20b] for the 2018 ROADEF/EURO chal-
lenge glass cutting problem is actually also very competitive compared to other dedicated
algorithms for guillotine Packing Problems from the literature, and is even able to return
state-of-the-art solutions on several variants. Its performances seem to rely on two key
components: a branching scheme which limits symmetry issues; and a tree search algo-
rithm fully exploiting guide functions which make it possible to compare nodes at different
levels of the search tree.

In addition to effectiveness, the choice of a tree search algorithm makes the algorithm
attractive for problems with additional side constraints. Indeed, new constraints are likely
to reduce the size of the search tree.

The algorithm is implemented in a new software package intended for researchers in
Packing Problems to develop new branching schemes for other variants, for researchers in
Artificial Intelligence to experiment new tree search algorithms, and for OR practitioners
to quickly develop efficient algorithms implementing several business-specific constraints.

Future research will focus on developing algorithms for Cutting Stock and Variable-
sized Bin Packing Problems, as well as branching schemes to generate another kind of
patterns such as non-guillotine or non-staged guillotine ones.

119

	Anytime tree search algorithms – An overview
	Tree search algorithms in operations research
	Fundamental tree search algorithms
	Anytime tree search algorithms from AI/planning
	Constructive meta-heuristics seen as tree search

	Combinator-based Anytime Tree Search framework (CATS)
	Why a generic search framework?
	Towards a generic tree search
	Generic tree search modifications – the combinators
	Implemented algorithms

	A tree search for the EURO/ROADEF 2018 challenge
	Introduction
	Problem description
	Definitions and notations
	Branching scheme
	Tree search
	Numerical results
	Conclusion and perspectives

	Tree search algorithms for the Sequential Ordering Problem (SOP)
	Introduction
	A search tree for the SOP
	Dominance pruning
	Computational results
	Conclusions and future works
	A CATS-framework application example

	Conclusions & Perspectives
	Main conclusions
	Perspective and future research

	Bibliography
	PackingSolver: a solver for guillotine packing problems
	Introduction
	Literature review
	Algorithm description
	Computational experiments
	Discussion
	Conclusion and future work

