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EXAMPLE OF A COMBINATORIAL OPTIMIZATION PROBLEM

the Traveling Salesman Problem
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ANOTHER EXAMPLE (GLASS WINDOW FACTORY)

Given some items, minimize the wasted area (bin packing variant)




THESE PROBLEMS ARE DIFFICULT (AND WE NEED TO SOLVE THEM)

They are N'P-Hard
huge number of solutions:

- if 100 cities: 100 feasible solutions.
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THESE PROBLEMS ARE DIFFICULT (AND WE NEED TO SOLVE THEM)

They are N'P-Hard
huge number of solutions:

- if 100 cities: 100 feasible solutions.

And we have to make sure all the “situations” are covered to find the
best solution
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SO, WHAT CAN WE DO?

Exact methods

explore all “situations”
(usually with a branch & bound)
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SO, WHAT CAN WE DO?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) | of solutions

pros: pros:
always optimal find quickly a good solution

cons: cons:

can take a long time not always optimal

examples: examples:

Branch-and-bound tabu search, evolutionary algorithms
tree search ant colony optimization
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ANYTIME TREE SEARCH ALGORITHMS

from heuristic search / Al planning communities
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ANYTIME TREE SEARCH ALGORITHMS (CONT.)
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ANYTIME TREE SEARCH ALGORITHMS (CONT.)
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Why could it be interesting?

- Combine search-space reductions from branch & bounds
- and guidance strategies from meta-heuristics

Not present in Operations Research
We study anytime tree search algorithms for classical OR problems
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Anytime tree search algorithms

About the implementation

The sequential ordering problem

EURO/ROADEF challenge 2018
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ANYTIME TREE SEARCH ALGORITHMS
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THE ALGORITHM-DESIGN METHODOLOGY

1. define the search tree
2. define a bound (or guidance strategy)
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THE ALGORITHM-DESIGN METHODOLOGY

1. define the search tree
2. define a bound (or guidance strategy)
3. search the resulting tree (generic part)
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DEPTH FIRST SEARCH

O
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BEST (BOUND) FIRST / A*
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ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First

Pros

Cons
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ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First

Pros | e Anytime e opens less nodes
e Memory Bounded to close the instance
Cons | e suffers from early | e not anytime
bad decisions e Can use too much

memory
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BEAM SEARCH (D=3)
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ITERATIVE BEAM SEARCH

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D =2
- then 4, 8, etc.
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ITERATIVE BEAM SEARCH

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D =2
- then 4, 8, etc.

A few properties:

- a complete/exact algorithm when the beam is wide enough
- the algorithm may open a node multiple times...
- but not that much given some conditions (theorem)

- in average a node is reopened only once
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HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:
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HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:

- re-opening a node is almost free
- data-structures storing nodes usually cost an additional time
- storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy
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ABOUT THE IMPLEMENTATION

Collaboration with Abdel-Malik Bouhassoun
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A LARGE NUMBER OF TREE SEARCH ALGORITHMS

DFS, A* Beam Search and many others...

17/53



A LARGE NUMBER OF POSSIBLE MODIFICATIONS FOR EACH STRATEGY

- registering search statistics measuring
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A LARGE NUMBER OF POSSIBLE MODIFICATIONS FOR EACH STRATEGY

- registering search statistics measuring

- dynamic-programming dominance pruning
- online learning (ACO-style)

- probing strategy

- etc.
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FOR A TOTAL OF...

- 15 search algorithms
- 4 possible variations
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FOR A TOTAL OF...

- 15 search algorithms
- 4 possible variations
- thus 15 x 2% = 240 possible combinations!

we need a clever way to implement all of these variants
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ENTER THE COMBINATORS

tree search algorithm

Problem specific tree
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ENTER THE COMBINATORS

Tree Search

1 4

’ Combinator ‘

2 3
Node
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INTRODUCING...

Gy

the CATS framework:

(CON\BINATOR-BASED ANYTIME TREE SEARCH)
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INTRODUCING...

the CATS framework:

Gy

(CON\BINATOR-BASED ANYTIME TREE SEARCH)

implemented in C++ (efficient)

- 15+ tree search algorithms
- 5 combinators

- GNU/GPL license
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THE SEQUENTIAL ORDERING PROBLEM

Collaboration with Abdel-Malik Bouhassoun and Hadrien Cambazard
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SOP - PROBLEM DEFINITION

Asymmetric Traveling Salesman Problem with precedence constraints

2 d d
a$b : e a » b e
4 9
3
3 . .
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THE BENCHMARK: SOPLIB

- Standard benchmark, proposed in 2006 (“large” instances)
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THE BENCHMARK: SOPLIB

- Standard benchmark, proposed in 2006 (“large” instances)
- Some instances are almost precedence free

- Some are heavily constrained

- “in the middle” instances remain open (7 instances)
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LITERATURE

Many methods implemented during the 30 last years to solve SOP

Exact methods: - Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/prunings
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LITERATURE

Many methods implemented during the 30 last years to solve SOP

Exact methods: - Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/prunings

Meta-heuristics: - Local search (3-opt)
- Ant Colony Optimization (using a 3-opt move)
- others (GA, ABC, parallel roll-out, LKH ...)

- Exact methods tend to build stronger bounds
- meta-heuristics strongly rely on 3-opt (local search)
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IMPLICIT TREE - FORWARD BRANCHING

goal
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DYNAMIC PROGRAMMING INSPIRED PRUNINGS

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12
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DYNAMIC PROGRAMMING INSPIRED PRUNINGS

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12

Discard (2) as it is “dominated” by (1).
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RESULTS - PERFORMANCE PROFILES ON R.700.1000.15

state-of-the-art:

- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- best-so-far LKH3 with 100.000 seconds run (= 27h)
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RESULTS - PERFORMANCE PROFILES ON R.700.1000.15

state-of-the-art:

- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- best-so-far LKH3 with 100.000 seconds run (= 27h)

----- greedy
=+++ best-so-far
— BS

—— BS+PE
--- DFS

——- DFS+PE
----- EACS+SA
—-=- LDS
LDS+PE

objective
=
o
)

29/53



RESULTS - NEW BEST-SO-FAR SOLUTIONS

6 over 7 new-best-so-far solutions
(the other one is probably optimal)

Instance best known | BS+PE (600s)
R.500.100.15 5.284 5.261
R.500.1000.15 49.504 49.366
R.600.100.15 5.472 5.469
R.600.1000.15 55.213 54.994
R.700.100.15 7.021 7.020
R.700.1000.15 65.305 64.777

30/53



RESULTS - OVERVIEW

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
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RESULTS - OVERVIEW

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average

30% ,60% precedence constraints: proves optimality in a few
milliseconds.

The SOPLIB mainly contains heavily constrained instances:

- hard for MIPs and local searches
- but (relatively) easy for constructive algorithms

- thus the need to consider anytime tree searches
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WRAPPING-UP ON THE SOP

- The search-strategy choice is crucial
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WRAPPING-UP ON THE SOP

- The search-strategy choice is crucial
- (cheap) search space reductions are useful
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EURO/ROADEF CHALLENGE 2018

Collaboration with Florian Fontan
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EURO/ROADEF CHALLENGE

Presented by the French and European Operations Research societies
International competition
A challenge every two years:

- 2012: Google
- 2014: SNCF
- 2016: Air Liquide
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EURO/ROADEF CHALLENGE

Presented by the French and European Operations Research societies

International competition
A challenge every two years:

- 2012: Google

- 2014: SNCF

- 2016: Air Liquide

- 2018: Saint Gobain

SAINT-GOBAIN
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ONE OF OUR SOLUTIONS




THE PROBLEM

- Cutting & packing problem
- variant of the bin-packing
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THE PROBLEM

- Cutting & packing problem
- variant of the bin-packing
- with various constraints, some examples:

- guillotine cuts
- Defects
- precedence constraints

- Large-size instances (up to 700 items)
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PLACE ITEMS IN THE CORNER RULE

Called a “staircase” representation
Place a remaining item at a possible position

T o
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PLACE ITEMS IN THE CORNER RULE

Called a “staircase” representation
Place a remaining item at a possible position

In this case, 8 children for this node
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ALONGSIDE

branch & bound ideas:

- (pseudo-)dominance rules

- symmetry-breaking rules
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LET'S TALK ABOUT GUIDES (NODE GOODNESS MEASURE)

Which one should | keep?
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LET'S TALK ABOUT GUIDES (NODE GOODNESS MEASURE)

Which one should | keep?

The less waste, the more attractive the partial solution
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WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES
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WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES

Problem with waste:

- Small items at the beginning and big items at the end
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HOW TO CORRECT THIS BIAS?

waste percentage
mean item area
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“HEURISTIC” GUIDES

Much more efficient than the bound guide
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“HEURISTIC” GUIDES

Much more efficient than the bound guide
cannot be used to prune nodes
Thus the need to separate the two concepts
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SEARCH STRATEGY

- Variant of Iterative Beam Search
- replace the truncated BrFS by a truncated A*
- Called Iterative MBA*
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CONCLUSIONS ON THE CHALLENGE

- anytime tree search algorithm (IMBA*)
- combines exact-methods parts (dominances, etc.)
- new “heuristic” guidance strategy

These 3 components are required to provide a competitive algorithm.
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GENERALIZING THE ALGORITHM

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)
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GENERALIZING THE ALGORITHM

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)

- We obtain state-of-the-art results on many variants

- and very competitive on other variants

- open-source software (PackingSolver)
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BONUS
TREE SEARCH FOR OTHER PROBLEMS

Collaboration with Aurélien Secardin and Pablo Andres Focke

4753



LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.
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LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

- with Pareto-dominance strategies
- probability-based heuristic guidance strategy
- state-of-the-art (new best-known solutions on many instances)
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PERMUTATION FLOWSHOP

Well studied problem (F,/permu/Cmax, and Fm/permu/ - C;)

We present an iterative beam search (again):
- with a search tree from a recent branch & bound (Gmys et al.)
- guidance strategy similar the LR greedy heuristic

- state-of-the-art results on large VRF instances (makespan)
- state-of-the-art results on large Taillard instances (flowtime)
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WRAPPING-UP
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WHY DOES IT WORK?

Benefits from a large variety of contributions:

- exact methods (search space reductions)
- anytime tree search (Al/planning)
- meta-heuristics (guide functions)
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CONTRIBUTIONS (ANYTIME TREE SEARCH ALGORITHMS)

Simple and efficient anytime tree search algorithms applied on
various problems:

- sequential ordering problem

- EURO/ROADEF challenge

- generalization to Cutting & packing
- longest common subsequence

- permutation flowshop
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PERSPECTIVES

- Apply anytime tree search on other problems
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PERSPECTIVES

- Apply anytime tree search on other problems
- Learn guides automatically (ACO, Reinforcement Learning)

- More search-space reductions:

- decision diagrams, ng-routes, etc.
- MIP, CP
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