
Anytime tree search for combinatorial optimization

Thesis defense

presented by: Luc Libralesso
supervised by: Louis Esperet, Thibault Honegger, Vincent Jost
July, 24, 2020

G-SCOP, Grenoble, France
email: luc.libralesso@grenoble-inp.fr



Example of a combinatorial optimization problem

the Traveling Salesman Problem

1/53



Example of a combinatorial optimization problem

the Traveling Salesman Problem

1/53



Another example (glass window factory)

Given some items, minimize the wasted area (bin packing variant)

2/53



These problems are difficult (and we need to solve them)

They are NP-Hard
huge number of solutions:

• if 100 cities: 10150 feasible solutions.

And we have to make sure all the “situations” are covered to find the
best solution

3/53



These problems are difficult (and we need to solve them)

They are NP-Hard
huge number of solutions:

• if 100 cities: 10150 feasible solutions.

And we have to make sure all the “situations” are covered to find the
best solution

3/53



So, what can we do?

Exact methods

(meta-) heuristics

explore all “situations”

explore a promising subset

(usually with a branch & bound)

of solutions

pros: pros:
always optimal find quickly a good solution
cons: cons:
can take a long time not always optimal

examples: examples:
Branch-and-bound tabu search, evolutionary algorithms
tree search ant colony optimization

4/53



So, what can we do?

Exact methods

(meta-) heuristics

explore all “situations”

explore a promising subset

(usually with a branch & bound)

of solutions

pros:

pros:

always optimal

find quickly a good solution

cons:

cons:

can take a long time

not always optimal

examples: examples:
Branch-and-bound tabu search, evolutionary algorithms
tree search ant colony optimization

4/53



So, what can we do?

Exact methods

(meta-) heuristics

explore all “situations”

explore a promising subset

(usually with a branch & bound)

of solutions

pros:

pros:

always optimal

find quickly a good solution

cons:

cons:

can take a long time

not always optimal

examples:

examples:

Branch-and-bound

tabu search, evolutionary algorithms

tree search

ant colony optimization

4/53



So, what can we do?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) of solutions

pros:

pros:

always optimal

find quickly a good solution

cons:

cons:

can take a long time

not always optimal

examples:

examples:

Branch-and-bound

tabu search, evolutionary algorithms

tree search

ant colony optimization

4/53



So, what can we do?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) of solutions

pros: pros:
always optimal find quickly a good solution
cons: cons:
can take a long time not always optimal

examples:

examples:

Branch-and-bound

tabu search, evolutionary algorithms

tree search

ant colony optimization

4/53



So, what can we do?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) of solutions

pros: pros:
always optimal find quickly a good solution
cons: cons:
can take a long time not always optimal

examples: examples:
Branch-and-bound tabu search, evolutionary algorithms
tree search ant colony optimization

4/53



Anytime tree search algorithms

from heuristic search / AI planning communities

• explore a tree (as branch & bounds)
• start by the most promising regions (as meta-heuristics)

branch & bounds meta-heuristicsanytime
tree search

5/53



Anytime tree search algorithms

from heuristic search / AI planning communities

• explore a tree (as branch & bounds)

• start by the most promising regions (as meta-heuristics)

branch & bounds meta-heuristicsanytime
tree search

5/53



Anytime tree search algorithms

from heuristic search / AI planning communities

• explore a tree (as branch & bounds)
• start by the most promising regions (as meta-heuristics)

branch & bounds meta-heuristicsanytime
tree search

5/53



Anytime tree search algorithms

from heuristic search / AI planning communities

• explore a tree (as branch & bounds)
• start by the most promising regions (as meta-heuristics)

branch & bounds meta-heuristicsanytime
tree search

5/53



Anytime tree search algorithms (cont.)

branch & bounds meta-heuristicsanytime
tree search

Why could it be interesting?

• Combine search-space reductions from branch & bounds
• and guidance strategies from meta-heuristics

Not present in Operations Research
We study anytime tree search algorithms for classical OR problems

6/53



Anytime tree search algorithms (cont.)

branch & bounds meta-heuristicsanytime
tree search

Why could it be interesting?

• Combine search-space reductions from branch & bounds
• and guidance strategies from meta-heuristics

Not present in Operations Research
We study anytime tree search algorithms for classical OR problems

6/53



Anytime tree search algorithms (cont.)

branch & bounds meta-heuristicsanytime
tree search

Why could it be interesting?

• Combine search-space reductions from branch & bounds
• and guidance strategies from meta-heuristics

Not present in Operations Research
We study anytime tree search algorithms for classical OR problems

6/53



Anytime tree search algorithms

About the implementation

The sequential ordering problem

EURO/ROADEF challenge 2018
7/53



Anytime tree search algorithms

7/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

8/53



Example of a branch & bound

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

b c

4 4

c b

7 8

8/53



The algorithm-design methodology

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

b c

4 4

c b

7 8

1. define the search tree
2. define a bound (or guidance strategy)

3. search the resulting tree (generic part)

9/53



The algorithm-design methodology

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

b c

4 4

c b

7 8

1. define the search tree
2. define a bound (or guidance strategy)
3. search the resulting tree (generic part)

9/53



Depth First Search

10/53



Depth First Search

10/53



Depth First Search

10/53



Depth First Search

10/53



Depth First Search

10/53



Depth First Search

10/53



Best (bound) First / A*

0

11/53



Best (bound) First / A*

0

2 1 4

11/53



Best (bound) First / A*

0

2 1 4

3 4

11/53



Best (bound) First / A*

0

2 1 4

3 44 5 6

11/53



Best (bound) First / A*

0

2 1 4

3 44 5 6

3 4

11/53



Best (bound) First / A*

0

2 1 4

3 44 5 6

3 4

4 5

11/53



Advantages and Drawbacks

Depth First Search A*/Best First
Pros

• Anytime • opens less nodes
• Memory Bounded to close the instance

Cons

• suffers from early • not anytime
bad decisions • Can use too much

memory

12/53



Advantages and Drawbacks

Depth First Search A*/Best First
Pros • Anytime

• opens less nodes

• Memory Bounded

to close the instance

Cons

• suffers from early • not anytime
bad decisions • Can use too much

memory

12/53



Advantages and Drawbacks

Depth First Search A*/Best First
Pros • Anytime

• opens less nodes

• Memory Bounded

to close the instance

Cons • suffers from early

• not anytime

bad decisions

• Can use too much
memory

12/53



Advantages and Drawbacks

Depth First Search A*/Best First
Pros • Anytime • opens less nodes

• Memory Bounded to close the instance
Cons • suffers from early

• not anytime

bad decisions

• Can use too much
memory

12/53



Advantages and Drawbacks

Depth First Search A*/Best First
Pros • Anytime • opens less nodes

• Memory Bounded to close the instance
Cons • suffers from early • not anytime

bad decisions • Can use too much
memory

12/53



Beam Search (D=3)

0

13/53



Beam Search (D=3)

0

1 2 2

13/53



Beam Search (D=3)

0

1 2 2

5 6 54 3 3 4

13/53



Beam Search (D=3)

0

1 2 2

5 6 54 3 3 4

13/53



Beam Search (D=3)

0

1 2 2

5 6 54 3 3

7 65 55

4

13/53



Beam Search (D=3)

0

1 2 2

5 6 54 3 3

7 65 55

4

13/53



Iterative Beam Search

• starts a beam search of size D = 1 (greedy)
• then a beam search of size D = 2
• then 4, 8, etc.

A few properties:

• a complete/exact algorithm when the beam is wide enough
• the algorithm may open a node multiple times...
• but not that much given some conditions (theorem)
• in average a node is reopened only once

14/53



Iterative Beam Search

• starts a beam search of size D = 1 (greedy)
• then a beam search of size D = 2
• then 4, 8, etc.

A few properties:

• a complete/exact algorithm when the beam is wide enough

• the algorithm may open a node multiple times...
• but not that much given some conditions (theorem)
• in average a node is reopened only once

14/53



Iterative Beam Search

• starts a beam search of size D = 1 (greedy)
• then a beam search of size D = 2
• then 4, 8, etc.

A few properties:

• a complete/exact algorithm when the beam is wide enough
• the algorithm may open a node multiple times...

• but not that much given some conditions (theorem)
• in average a node is reopened only once

14/53



Iterative Beam Search

• starts a beam search of size D = 1 (greedy)
• then a beam search of size D = 2
• then 4, 8, etc.

A few properties:

• a complete/exact algorithm when the beam is wide enough
• the algorithm may open a node multiple times...
• but not that much given some conditions (theorem)
• in average a node is reopened only once

14/53



How bad re-openings are?

In our algorithms, we open about a million nodes per second, thus:

• re-opening a node is almost free
• data-structures storing nodes usually cost an additional time
• storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

15/53



How bad re-openings are?

In our algorithms, we open about a million nodes per second, thus:

• re-opening a node is almost free

• data-structures storing nodes usually cost an additional time
• storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

15/53



How bad re-openings are?

In our algorithms, we open about a million nodes per second, thus:

• re-opening a node is almost free
• data-structures storing nodes usually cost an additional time

• storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

15/53



How bad re-openings are?

In our algorithms, we open about a million nodes per second, thus:

• re-opening a node is almost free
• data-structures storing nodes usually cost an additional time
• storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

15/53



How bad re-openings are?

In our algorithms, we open about a million nodes per second, thus:

• re-opening a node is almost free
• data-structures storing nodes usually cost an additional time
• storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

15/53



About the implementation

Collaboration with Abdel-Malik Bouhassoun

16/53



A large number of tree search algorithms

DFS, A*, Beam Search and many others...

17/53



A large number of possible modifications for each strategy

• registering search statistics measuring

• dynamic-programming dominance pruning
• online learning (ACO-style)
• probing strategy
• etc.

18/53



A large number of possible modifications for each strategy

• registering search statistics measuring
• dynamic-programming dominance pruning

• online learning (ACO-style)
• probing strategy
• etc.

18/53



A large number of possible modifications for each strategy

• registering search statistics measuring
• dynamic-programming dominance pruning
• online learning (ACO-style)

• probing strategy
• etc.

18/53



A large number of possible modifications for each strategy

• registering search statistics measuring
• dynamic-programming dominance pruning
• online learning (ACO-style)
• probing strategy
• etc.

18/53



For a total of...

• 15 search algorithms
• 4 possible variations

• thus 15× 24 = 240 possible combinations!

we need a clever way to implement all of these variants

19/53



For a total of...

• 15 search algorithms
• 4 possible variations
• thus 15× 24 = 240 possible combinations!

we need a clever way to implement all of these variants

19/53



For a total of...

• 15 search algorithms
• 4 possible variations
• thus 15× 24 = 240 possible combinations!

we need a clever way to implement all of these variants

19/53



Enter the combinators

Problem specific tree

tree search algorithm

20/53



Enter the combinators

Tree Search

Node

Combinator

1

2 3

4

21/53



Introducing...

the CATS framework:
(Combinator-based Anytime Tree Search)

• implemented in C++ (efficient)
• 15+ tree search algorithms
• 5 combinators
• GNU/GPL license

22/53



Introducing...

the CATS framework:
(Combinator-based Anytime Tree Search)

• implemented in C++ (efficient)
• 15+ tree search algorithms
• 5 combinators
• GNU/GPL license

22/53



The sequential ordering problem

Collaboration with Abdel-Malik Bouhassoun and Hadrien Cambazard

23/53



SOP - problem definition

Asymmetric Traveling Salesman Problem with precedence constraints

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

a b

c

d

e

24/53



The benchmark: SOPLIB

• Standard benchmark, proposed in 2006 (“large” instances)

• Some instances are almost precedence free
• Some are heavily constrained
• “in the middle” instances remain open (7 instances)

25/53



The benchmark: SOPLIB

• Standard benchmark, proposed in 2006 (“large” instances)
• Some instances are almost precedence free
• Some are heavily constrained
• “in the middle” instances remain open (7 instances)

25/53



Literature

Many methods implemented during the 30 last years to solve SOP

Exact methods: • Branch and cuts
• Decision diagrams + CP
• Branch & Bounds with advanced bounds/prunings

Meta-heuristics: • Local search (3-opt)
• Ant Colony Optimization (using a 3-opt move)
• others (GA, ABC, parallel roll-out, LKH …)

• Exact methods tend to build stronger bounds
• meta-heuristics strongly rely on 3-opt (local search)

26/53



Literature

Many methods implemented during the 30 last years to solve SOP

Exact methods: • Branch and cuts
• Decision diagrams + CP
• Branch & Bounds with advanced bounds/prunings

Meta-heuristics: • Local search (3-opt)
• Ant Colony Optimization (using a 3-opt move)
• others (GA, ABC, parallel roll-out, LKH …)

• Exact methods tend to build stronger bounds
• meta-heuristics strongly rely on 3-opt (local search)

26/53



Literature

Many methods implemented during the 30 last years to solve SOP

Exact methods: • Branch and cuts
• Decision diagrams + CP
• Branch & Bounds with advanced bounds/prunings

Meta-heuristics: • Local search (3-opt)
• Ant Colony Optimization (using a 3-opt move)
• others (GA, ABC, parallel roll-out, LKH …)

• Exact methods tend to build stronger bounds
• meta-heuristics strongly rely on 3-opt (local search)

26/53



Implicit tree - forward branching

a b

c

d

e

2

1

3

2

1

1

2

1
2

3
4

0 (a)

b c d

1 3 2

d c

c

2 4

4

e

6
goal

b

7

b c

4 4

c b

7 8

27/53



Dynamic Programming inspired prunings

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12

Discard (2) as it is “dominated” by (1).

28/53



Dynamic Programming inspired prunings

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12

Discard (2) as it is “dominated” by (1).

28/53



Results - Performance profiles on R.700.1000.15

state-of-the-art:

• Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
• best-so-far LKH3 with 100.000 seconds run (≈ 27h)

10 1 100 101 102

time

105

ob
je

ct
iv

e greedy
best-so-far
EACS+SA

29/53



Results - Performance profiles on R.700.1000.15

state-of-the-art:

• Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
• best-so-far LKH3 with 100.000 seconds run (≈ 27h)

10 2 10 1 100 101 102

time

105

ob
je

ct
iv

e

greedy
best-so-far
EACS+SA
DFS
DFS+PE

29/53



Results - Performance profiles on R.700.1000.15

state-of-the-art:

• Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
• best-so-far LKH3 with 100.000 seconds run (≈ 27h)

10 2 10 1 100 101 102

time

105

ob
je

ct
iv

e

greedy
best-so-far
EACS+SA
DFS
DFS+PE
LDS
LDS+PE

29/53



Results - Performance profiles on R.700.1000.15

state-of-the-art:

• Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
• best-so-far LKH3 with 100.000 seconds run (≈ 27h)

10 2 10 1 100 101 102

time

105

ob
je

ct
iv

e

greedy
best-so-far
BS
BS+PE
DFS
DFS+PE
EACS+SA
LDS
LDS+PE

29/53



Results - New best-so-far solutions

6 over 7 new-best-so-far solutions
(the other one is probably optimal)

Instance best known BS+PE (600s)
R.500.100.15 5.284 5.261
R.500.1000.15 49.504 49.366
R.600.100.15 5.472 5.469
R.600.1000.15 55.213 54.994
R.700.100.15 7.021 7.020
R.700.1000.15 65.305 64.777

30/53



Results - Overview

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance

15% precedence constraints: 5 children in average
30% ,60% precedence constraints: proves optimality in a few

milliseconds.

The SOPLIB mainly contains heavily constrained instances:

• hard for MIPs and local searches
• but (relatively) easy for constructive algorithms
• thus the need to consider anytime tree searches

31/53



Results - Overview

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average

30% ,60% precedence constraints: proves optimality in a few
milliseconds.

The SOPLIB mainly contains heavily constrained instances:

• hard for MIPs and local searches
• but (relatively) easy for constructive algorithms
• thus the need to consider anytime tree searches

31/53



Results - Overview

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average
30% ,60% precedence constraints: proves optimality in a few

milliseconds.

The SOPLIB mainly contains heavily constrained instances:

• hard for MIPs and local searches
• but (relatively) easy for constructive algorithms
• thus the need to consider anytime tree searches

31/53



Results - Overview

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average
30% ,60% precedence constraints: proves optimality in a few

milliseconds.

The SOPLIB mainly contains heavily constrained instances:

• hard for MIPs and local searches
• but (relatively) easy for constructive algorithms
• thus the need to consider anytime tree searches

31/53



Wrapping-up on the SOP

• The search-strategy choice is crucial

• (cheap) search space reductions are useful

32/53



Wrapping-up on the SOP

• The search-strategy choice is crucial
• (cheap) search space reductions are useful

32/53



EURO/ROADEF challenge 2018

Collaboration with Florian Fontan

33/53



EURO/ROADEF Challenge

Presented by the French and European Operations Research societies

International competition

A challenge every two years:

• 2012: Google
• 2014: SNCF
• 2016: Air Liquide

• 2018: Saint Gobain

34/53



EURO/ROADEF Challenge

Presented by the French and European Operations Research societies

International competition

A challenge every two years:

• 2012: Google
• 2014: SNCF
• 2016: Air Liquide
• 2018: Saint Gobain

34/53



One of our solutions

35/53



The problem

• Cutting & packing problem
• variant of the bin-packing

• with various constraints, some examples:
• guillotine cuts
• Defects
• precedence constraints

• Large-size instances (up to 700 items)

36/53



The problem

• Cutting & packing problem
• variant of the bin-packing
• with various constraints, some examples:

• guillotine cuts
• Defects
• precedence constraints

• Large-size instances (up to 700 items)

36/53



Place items in the corner rule

Called a “staircase” representation
Place a remaining item at a possible position

a

b

37/53



Place items in the corner rule

Called a “staircase” representation
Place a remaining item at a possible position

a

b

37/53



Place items in the corner rule

Called a “staircase” representation
Place a remaining item at a possible position

a

b

37/53



Place items in the corner rule

Called a “staircase” representation
Place a remaining item at a possible position

a

b

In this case, 8 children for this node

37/53



Alongside

branch & bound ideas:

• (pseudo-)dominance rules
• symmetry-breaking rules

38/53



Let’s talk about guides (node goodness measure)

Which one should I keep?

The less waste, the more attractive the partial solution

39/53



Let’s talk about guides (node goodness measure)

Which one should I keep?

The less waste, the more attractive the partial solution

39/53



What happens when we use bounds as guides

Problem with waste:

• Small items at the beginning and big items at the end

40/53



What happens when we use bounds as guides

Problem with waste:

• Small items at the beginning and big items at the end

40/53



What happens when we use bounds as guides

Problem with waste:

• Small items at the beginning and big items at the end

40/53



How to correct this bias?

waste percentage
mean item area

41/53



How to correct this bias?

waste percentage
mean item area

41/53



“Heuristic” guides

Much more efficient than the bound guide

cannot be used to prune nodes
Thus the need to separate the two concepts

42/53



“Heuristic” guides

Much more efficient than the bound guide
cannot be used to prune nodes

Thus the need to separate the two concepts

42/53



“Heuristic” guides

Much more efficient than the bound guide
cannot be used to prune nodes
Thus the need to separate the two concepts

42/53



Search Strategy

• Variant of Iterative Beam Search
• replace the truncated BrFS by a truncated A*
• Called Iterative MBA*

43/53



performance

44/53



Conclusions on the challenge

• anytime tree search algorithm (IMBA*)
• combines exact-methods parts (dominances, etc.)
• new “heuristic” guidance strategy

These 3 components are required to provide a competitive algorithm.

45/53



Generalizing the algorithm

• Study over many well-studied variants in the literature
• large number of benchmarks (10+)

• We obtain state-of-the-art results on many variants
• and very competitive on other variants
• open-source soǒtware (PackingSolver)

46/53



Generalizing the algorithm

• Study over many well-studied variants in the literature
• large number of benchmarks (10+)
• We obtain state-of-the-art results on many variants
• and very competitive on other variants

• open-source soǒtware (PackingSolver)

46/53



Generalizing the algorithm

• Study over many well-studied variants in the literature
• large number of benchmarks (10+)
• We obtain state-of-the-art results on many variants
• and very competitive on other variants
• open-source soǒtware (PackingSolver)

46/53



BONUS
tree search for other problems

Collaboration with Aurélien Secardin and Pablo Andres Focke

47/53



Longest Common Subsequence (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

• with Pareto-dominance strategies
• probability-based heuristic guidance strategy
• state-of-the-art (new best-known solutions on many instances)

48/53



Longest Common Subsequence (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

• with Pareto-dominance strategies
• probability-based heuristic guidance strategy
• state-of-the-art (new best-known solutions on many instances)

48/53



Longest Common Subsequence (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

• with Pareto-dominance strategies

• probability-based heuristic guidance strategy
• state-of-the-art (new best-known solutions on many instances)

48/53



Longest Common Subsequence (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

• with Pareto-dominance strategies
• probability-based heuristic guidance strategy

• state-of-the-art (new best-known solutions on many instances)

48/53



Longest Common Subsequence (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

• with Pareto-dominance strategies
• probability-based heuristic guidance strategy
• state-of-the-art (new best-known solutions on many instances)

48/53



Permutation Flowshop

Well studied problem (Fm/permu/Cmax, and Fm/permu/
∑
Cj)

We present an iterative beam search (again):

• with a search tree from a recent branch & bound (Gmys et al.)
• guidance strategy similar the LR greedy heuristic
• state-of-the-art results on large VRF instances (makespan)
• state-of-the-art results on large Taillard instances (flowtime)

49/53



Permutation Flowshop

Well studied problem (Fm/permu/Cmax, and Fm/permu/
∑
Cj)

We present an iterative beam search (again):

• with a search tree from a recent branch & bound (Gmys et al.)
• guidance strategy similar the LR greedy heuristic
• state-of-the-art results on large VRF instances (makespan)
• state-of-the-art results on large Taillard instances (flowtime)

49/53



Permutation Flowshop

Well studied problem (Fm/permu/Cmax, and Fm/permu/
∑
Cj)

We present an iterative beam search (again):

• with a search tree from a recent branch & bound (Gmys et al.)

• guidance strategy similar the LR greedy heuristic
• state-of-the-art results on large VRF instances (makespan)
• state-of-the-art results on large Taillard instances (flowtime)

49/53



Permutation Flowshop

Well studied problem (Fm/permu/Cmax, and Fm/permu/
∑
Cj)

We present an iterative beam search (again):

• with a search tree from a recent branch & bound (Gmys et al.)
• guidance strategy similar the LR greedy heuristic

• state-of-the-art results on large VRF instances (makespan)
• state-of-the-art results on large Taillard instances (flowtime)

49/53



Permutation Flowshop

Well studied problem (Fm/permu/Cmax, and Fm/permu/
∑
Cj)

We present an iterative beam search (again):

• with a search tree from a recent branch & bound (Gmys et al.)
• guidance strategy similar the LR greedy heuristic
• state-of-the-art results on large VRF instances (makespan)
• state-of-the-art results on large Taillard instances (flowtime)

49/53



Wrapping-up

50/53



Why does it work?

Benefits from a large variety of contributions:

• exact methods (search space reductions)
• anytime tree search (AI/planning)
• meta-heuristics (guide functions)

51/53



Contributions (anytime tree search algorithms)

Simple and efficient anytime tree search algorithms applied on
various problems:

• sequential ordering problem
• EURO/ROADEF challenge
• generalization to Cutting & packing
• longest common subsequence
• permutation flowshop

52/53



Perspectives

• Apply anytime tree search on other problems

• Learn guides automatically (ACO, Reinforcement Learning)
• More search-space reductions:

• decision diagrams, ng-routes, etc.
• MIP, CP

53/53



Perspectives

• Apply anytime tree search on other problems
• Learn guides automatically (ACO, Reinforcement Learning)

• More search-space reductions:
• decision diagrams, ng-routes, etc.
• MIP, CP

53/53



Perspectives

• Apply anytime tree search on other problems
• Learn guides automatically (ACO, Reinforcement Learning)
• More search-space reductions:

• decision diagrams, ng-routes, etc.
• MIP, CP

53/53



Anytime tree search for combinatorial optimization

Thesis defense

presented by: Luc Libralesso
supervised by: Louis Esperet, Thibault Honegger, Vincent Jost
July, 24, 2020

G-SCOP, Grenoble, France
email: luc.libralesso@grenoble-inp.fr



Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A
computationally efficient branch-and-bound algorithm for the
permutation flow-shop scheduling problem. 284(3):814–833. ISSN
0377-2217. doi: 10.1016/j.ejor.2020.01.039. URL
http://www.sciencedirect.com/science/article/pii/
S037722172030076X.

53/53

http://www.sciencedirect.com/science/article/pii/S037722172030076X
http://www.sciencedirect.com/science/article/pii/S037722172030076X

	Anytime tree search algorithms
	About the implementation
	The sequential ordering problem
	EURO/ROADEF challenge 2018
	Bonus: tree search for other problems
	Wrapping-up
	References

