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Example of a combinatorial optimization problem

the Traveling Salesman Problem
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Another example (glass window factory)

Given some items, minimize the wasted area (bin packing variant)
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These problems are difficult (and we need to solve them)

They are NP-Hard
huge number of solutions:

• if 100 cities: 10150 feasible solutions.

And we have to make sure all the “situations” are covered to find the
best solution
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So, what can we do?

Exact methods

(meta-) heuristics

explore all “situations”

explore a promising subset

(usually with a branch & bound)

of solutions

pros: pros:
always optimal find quickly a good solution
cons: cons:
can take a long time not always optimal

examples: examples:
Branch-and-bound tabu search, evolutionary algorithms
tree search ant colony optimization
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Anytime tree search algorithms

from heuristic search / AI planning communities

• explore a tree (as branch & bounds)
• start by the most promising regions (as meta-heuristics)

branch & bounds meta-heuristicsanytime
tree search
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Anytime tree search algorithms (cont.)

branch & bounds meta-heuristicsanytime
tree search

Why could it be interesting?

• Combine search-space reductions from branch & bounds
• and guidance strategies from meta-heuristics

Not present in Operations Research
We study anytime tree search algorithms for classical OR problems
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Anytime tree search algorithms

About the implementation

The sequential ordering problem

EURO/ROADEF challenge 2018
7/53



Anytime tree search algorithms
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Example of a branch & bound
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The algorithm-design methodology
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1. define the search tree
2. define a bound (or guidance strategy)

3. search the resulting tree (generic part)
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Depth First Search
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Best (bound) First / A*

0
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Advantages and Drawbacks

Depth First Search A*/Best First
Pros

• Anytime • opens less nodes
• Memory Bounded to close the instance

Cons

• suffers from early • not anytime
bad decisions • Can use too much

memory
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Beam Search (D=3)

0
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Iterative Beam Search

• starts a beam search of size D = 1 (greedy)
• then a beam search of size D = 2
• then 4, 8, etc.

A few properties:

• a complete/exact algorithm when the beam is wide enough
• the algorithm may open a node multiple times...
• but not that much given some conditions (theorem)
• in average a node is reopened only once
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How bad re-openings are?

In our algorithms, we open about a million nodes per second, thus:

• re-opening a node is almost free
• data-structures storing nodes usually cost an additional time
• storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy
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About the implementation

Collaboration with Abdel-Malik Bouhassoun
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A large number of tree search algorithms

DFS, A*, Beam Search and many others...
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A large number of possible modifications for each strategy

• registering search statistics measuring

• dynamic-programming dominance pruning
• online learning (ACO-style)
• probing strategy
• etc.
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For a total of...

• 15 search algorithms
• 4 possible variations

• thus 15× 24 = 240 possible combinations!

we need a clever way to implement all of these variants
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Enter the combinators

Problem specific tree

tree search algorithm
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Enter the combinators

Tree Search

Node

Combinator

1

2 3

4
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Introducing...

the CATS framework:
(Combinator-based Anytime Tree Search)

• implemented in C++ (efficient)
• 15+ tree search algorithms
• 5 combinators
• GNU/GPL license
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The sequential ordering problem

Collaboration with Abdel-Malik Bouhassoun and Hadrien Cambazard
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SOP - problem definition

Asymmetric Traveling Salesman Problem with precedence constraints
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The benchmark: SOPLIB

• Standard benchmark, proposed in 2006 (“large” instances)

• Some instances are almost precedence free
• Some are heavily constrained
• “in the middle” instances remain open (7 instances)
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Literature

Many methods implemented during the 30 last years to solve SOP

Exact methods: • Branch and cuts
• Decision diagrams + CP
• Branch & Bounds with advanced bounds/prunings

Meta-heuristics: • Local search (3-opt)
• Ant Colony Optimization (using a 3-opt move)
• others (GA, ABC, parallel roll-out, LKH …)

• Exact methods tend to build stronger bounds
• meta-heuristics strongly rely on 3-opt (local search)
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Implicit tree - forward branching
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Dynamic Programming inspired prunings

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12

Discard (2) as it is “dominated” by (1).
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Results - Performance profiles on R.700.1000.15

state-of-the-art:

• Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
• best-so-far LKH3 with 100.000 seconds run (≈ 27h)
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Results - New best-so-far solutions

6 over 7 new-best-so-far solutions
(the other one is probably optimal)

Instance best known BS+PE (600s)
R.500.100.15 5.284 5.261
R.500.1000.15 49.504 49.366
R.600.100.15 5.472 5.469
R.600.1000.15 55.213 54.994
R.700.100.15 7.021 7.020
R.700.1000.15 65.305 64.777
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Results - Overview

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance

15% precedence constraints: 5 children in average
30% ,60% precedence constraints: proves optimality in a few

milliseconds.

The SOPLIB mainly contains heavily constrained instances:

• hard for MIPs and local searches
• but (relatively) easy for constructive algorithms
• thus the need to consider anytime tree searches
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Wrapping-up on the SOP

• The search-strategy choice is crucial

• (cheap) search space reductions are useful
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EURO/ROADEF challenge 2018

Collaboration with Florian Fontan
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EURO/ROADEF Challenge

Presented by the French and European Operations Research societies

International competition

A challenge every two years:

• 2012: Google
• 2014: SNCF
• 2016: Air Liquide

• 2018: Saint Gobain
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One of our solutions
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The problem

• Cutting & packing problem
• variant of the bin-packing

• with various constraints, some examples:
• guillotine cuts
• Defects
• precedence constraints

• Large-size instances (up to 700 items)
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Place items in the corner rule

Called a “staircase” representation
Place a remaining item at a possible position

a

b
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Place items in the corner rule

Called a “staircase” representation
Place a remaining item at a possible position

a

b

In this case, 8 children for this node
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Alongside

branch & bound ideas:

• (pseudo-)dominance rules
• symmetry-breaking rules
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Let’s talk about guides (node goodness measure)

Which one should I keep?

The less waste, the more attractive the partial solution
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What happens when we use bounds as guides

Problem with waste:

• Small items at the beginning and big items at the end
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How to correct this bias?

waste percentage
mean item area
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“Heuristic” guides

Much more efficient than the bound guide

cannot be used to prune nodes
Thus the need to separate the two concepts
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Search Strategy

• Variant of Iterative Beam Search
• replace the truncated BrFS by a truncated A*
• Called Iterative MBA*
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performance
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Conclusions on the challenge

• anytime tree search algorithm (IMBA*)
• combines exact-methods parts (dominances, etc.)
• new “heuristic” guidance strategy

These 3 components are required to provide a competitive algorithm.
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Generalizing the algorithm

• Study over many well-studied variants in the literature
• large number of benchmarks (10+)

• We obtain state-of-the-art results on many variants
• and very competitive on other variants
• open-source soǒtware (PackingSolver)
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BONUS
tree search for other problems

Collaboration with Aurélien Secardin and Pablo Andres Focke
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Longest Common Subsequence (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

• with Pareto-dominance strategies
• probability-based heuristic guidance strategy
• state-of-the-art (new best-known solutions on many instances)
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Permutation Flowshop

Well studied problem (Fm/permu/Cmax, and Fm/permu/
∑
Cj)

We present an iterative beam search (again):

• with a search tree from a recent branch & bound (Gmys et al.)
• guidance strategy similar the LR greedy heuristic
• state-of-the-art results on large VRF instances (makespan)
• state-of-the-art results on large Taillard instances (flowtime)
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Wrapping-up
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Why does it work?

Benefits from a large variety of contributions:

• exact methods (search space reductions)
• anytime tree search (AI/planning)
• meta-heuristics (guide functions)
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Contributions (anytime tree search algorithms)

Simple and efficient anytime tree search algorithms applied on
various problems:

• sequential ordering problem
• EURO/ROADEF challenge
• generalization to Cutting & packing
• longest common subsequence
• permutation flowshop
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Perspectives

• Apply anytime tree search on other problems

• Learn guides automatically (ACO, Reinforcement Learning)
• More search-space reductions:

• decision diagrams, ng-routes, etc.
• MIP, CP
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