ANYTIME TREE SEARCH FOR COMBINATORIAL OPTIMIZATION THESIS DEFENSE

presented by: Luc Libralesso supervised by: Louis Esperet, Thibault Honegger, Vincent Jost July, 24, 2020

G-SCOP, Grenoble, France email: luc.libralesso@grenoble-inp.fr

EXAMPLE OF A COMBINATORIAL OPTIMIZATION PROBLEM

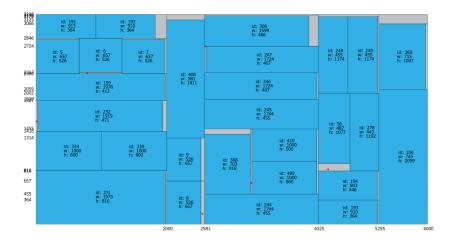
the Traveling Salesman Problem

EXAMPLE OF A COMBINATORIAL OPTIMIZATION PROBLEM

the Traveling Salesman Problem

ANOTHER EXAMPLE (GLASS WINDOW FACTORY)

Given some items, minimize the wasted area (bin packing variant)



They are \mathcal{NP} -Hard huge number of solutions:

• if 100 cities: 10¹⁵⁰ feasible solutions.

They are \mathcal{NP} -Hard huge number of solutions:

• if 100 cities: 10¹⁵⁰ feasible solutions.

And we have to make sure all the "situations" are covered to find the best solution

explore all "situations" (usually with a branch & bound)

explore all "situations" (usually with a branch & bound)

pros: always optimal cons: can take a long time

explore all "situations" (usually with a branch & bound)

pros: always optimal **cons:** can take a long time

examples:

Branch-and-bound tree search

explore all "situations" (usually with a branch & bound)

pros: always optimal cons: can take a long time

examples: Branch-and-bound tree search

(meta-) heuristics

explore a promising subset of solutions

explore all "situations" (usually with a branch & bound)

pros: always optimal **cons:** can take a long time

examples: Branch-and-bound tree search

(meta-) heuristics

explore a promising subset of solutions

pros: find quickly a good solution **cons:** not always optimal

explore all "situations" (usually with a branch & bound)

pros: always optimal cons: can take a long time

examples: Branch-and-bound tree search

(meta-) heuristics

explore a promising subset of solutions

pros: find quickly a good solution **cons:** not always optimal

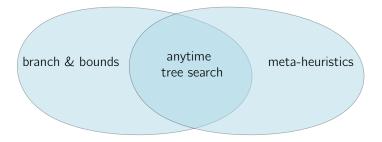
examples:

tabu search, evolutionary algorithms ant colony optimization

• explore a tree (as branch & bounds)

- explore a tree (as branch & bounds)
- start by the most promising regions (as meta-heuristics)

- explore a tree (as branch & bounds)
- start by the most promising regions (as meta-heuristics)



ANYTIME TREE SEARCH ALGORITHMS (CONT.)

Why could it be interesting?

ANYTIME TREE SEARCH ALGORITHMS (CONT.)

Why could it be interesting?

- Combine search-space reductions from branch & bounds
- and guidance strategies from meta-heuristics

ANYTIME TREE SEARCH ALGORITHMS (CONT.)

Why could it be interesting?

- Combine search-space reductions from branch & bounds
- and guidance strategies from meta-heuristics

Not present in Operations Research

We study anytime tree search algorithms for classical OR problems

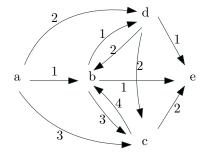
Anytime tree search algorithms

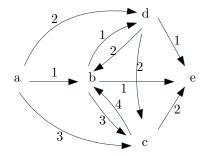
About the implementation

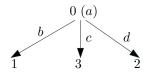
The sequential ordering problem

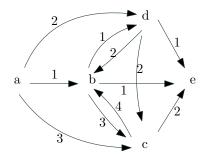
EURO/ROADEF challenge 2018

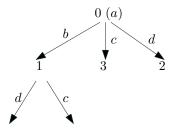
ANYTIME TREE SEARCH ALGORITHMS

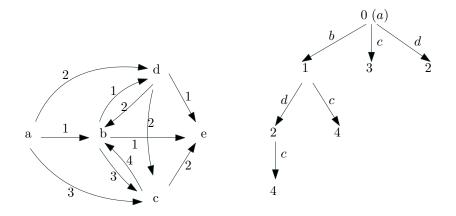


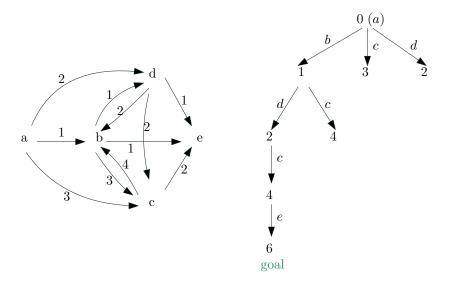


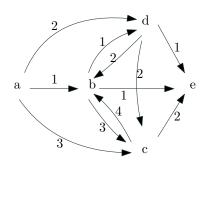


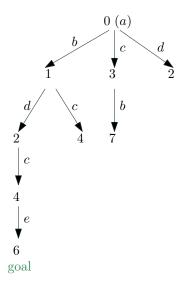


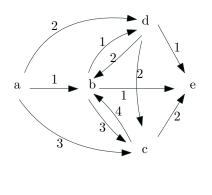


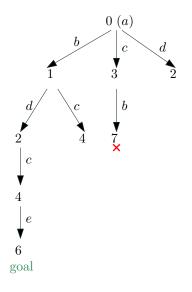


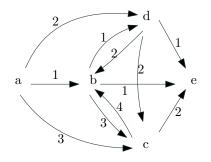


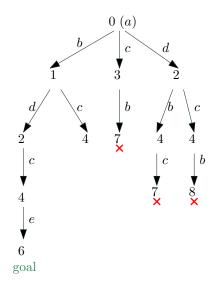




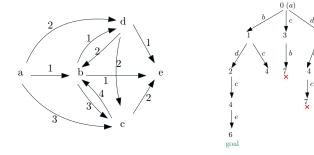






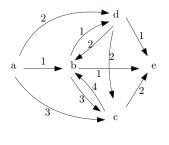


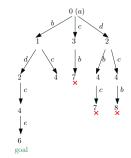
THE ALGORITHM-DESIGN METHODOLOGY



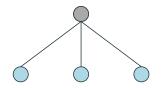
- 1. define the search tree
- 2. define a **bound** (or **guidance** strategy)

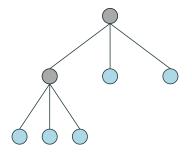
THE ALGORITHM-DESIGN METHODOLOGY

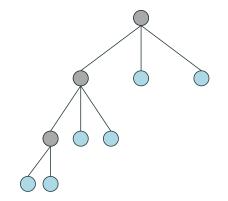


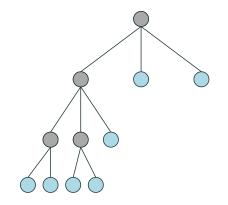


- 1. define the search tree
- 2. define a **bound** (or **guidance** strategy)
- 3. search the resulting tree (generic part)

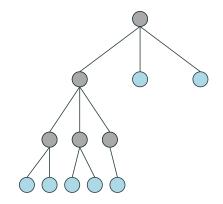


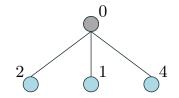


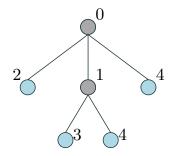


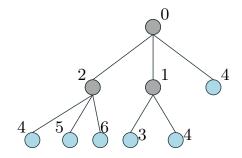


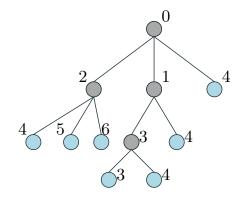
DEPTH FIRST SEARCH

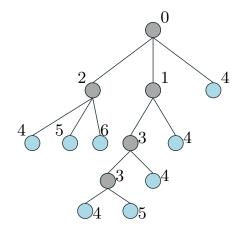












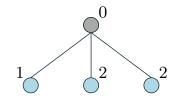
	Depth First Search	A*/Best First
Pros		
Cons		

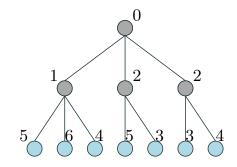
	Depth First Search	A*/Best First
Pros	 Anytime 	
	Memory Bounded	
Cons		

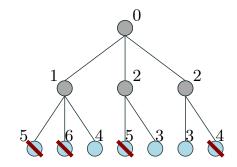
	Depth First Search	A*/Best First
Pros	 Anytime 	
	 Memory Bounded 	
Cons	• suffers from early	
	bad decisions	

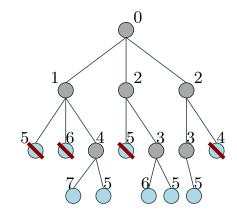
	Depth First Search	A*/Best First
Pros	 Anytime 	• opens less nodes
	 Memory Bounded 	to close the instance
Cons	• suffers from early	
	bad decisions	

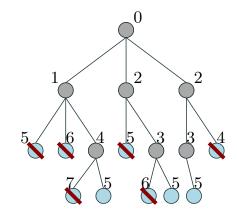
	Depth First Search	A*/Best First
Pros	 Anytime 	• opens less nodes
	 Memory Bounded 	to close the instance
Cons	• suffers from early	 not anytime
	bad decisions	 Can use too much
		memory











- starts a beam search of size D = 1 (greedy)
- then a beam search of size D = 2
- then 4, 8, etc.

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D = 2
- then 4, 8, etc.

A few properties:

 \cdot a complete/exact algorithm when the beam is wide enough

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D = 2
- then 4, 8, etc.

A few properties:

- \cdot a **complete/exact** algorithm when the beam is wide enough
- the algorithm may **open a node multiple times**...

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D = 2
- then 4, 8, *etc*.

A few properties:

- \cdot a **complete/exact** algorithm when the beam is wide enough
- the algorithm may **open a node multiple times**...
- **but not that much** given some conditions (theorem)
- in average a node is reopened only once

 $\cdot\,$ re-opening a node is almost free

- re-opening a node is almost free
- · data-structures storing nodes usually cost an additional time

- re-opening a node is almost free
- · data-structures storing nodes usually cost an additional time
- storing unexplored nodes **saturates** the memory (fast!)

- re-opening a node is almost free
- · data-structures storing nodes usually cost an additional time
- storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

ABOUT THE IMPLEMENTATION

Collaboration with Abdel-Malik Bouhassoun

DFS, A*, Beam Search and many others...

registering search statistics measuring

- registering search statistics measuring
- dynamic-programming dominance pruning

- registering search statistics measuring
- dynamic-programming dominance pruning
- online learning (ACO-style)

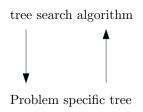
- registering search statistics measuring
- dynamic-programming dominance pruning
- online learning (ACO-style)
- probing strategy
- etc.

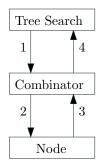
- 15 search algorithms
- 4 possible variations

- 15 search algorithms
- 4 possible variations
- thus $15 \times 2^4 = 240$ possible combinations!

- 15 search algorithms
- 4 possible variations
- thus $15 \times 2^4 = 240$ possible combinations!

we need a clever way to implement all of these variants





the CATS framework: (COMBINATOR-BASED ANYTIME TREE SEARCH)

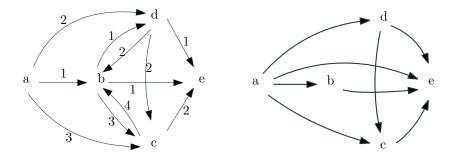
the CATS framework: (COMBINATOR-BASED ANYTIME TREE SEARCH)

- implemented in C++ (efficient)
- 15+ tree search algorithms
- 5 combinators
- GNU/GPL license

THE SEQUENTIAL ORDERING PROBLEM

Collaboration with Abdel-Malik Bouhassoun and Hadrien Cambazard

Asymmetric Traveling Salesman Problem with precedence constraints



• Standard benchmark, proposed in 2006 ("large" instances)

- Standard benchmark, proposed in 2006 ("large" instances)
- Some instances are almost precedence free
- Some are heavily constrained
- "in the middle" instances remain open (7 instances)

Many methods implemented during the 30 last years to solve SOP

Exact methods: • Branch and cuts

- Decision diagrams + CP
- Branch & Bounds with advanced bounds/prunings

Many methods implemented during the 30 last years to solve SOP

- **Exact methods:** Branch and cuts
 - Decision diagrams + CP
 - Branch & Bounds with advanced bounds/prunings

Meta-heuristics: • Local search (3-opt)

- Ant Colony Optimization (using a 3-opt move)
- others (GA, ABC, parallel roll-out, LKH ...)

Many methods implemented during the 30 last years to solve SOP

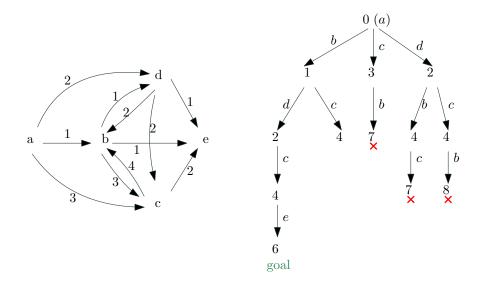
- **Exact methods:** Branch and cuts
 - Decision diagrams + CP
 - Branch & Bounds with advanced bounds/prunings

Meta-heuristics: • Local search (3-opt)

- Ant Colony Optimization (using a 3-opt move)
- others (GA, ABC, parallel roll-out, LKH ...)

- Exact methods tend to build stronger bounds
- meta-heuristics strongly rely on 3-opt (local search)

IMPLICIT TREE - FORWARD BRANCHING



Example, two equivalent partial solutions:

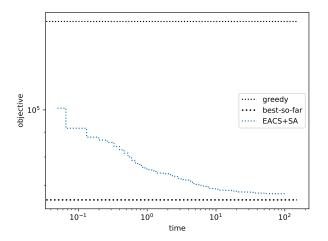
- 1. **a,b,c,d** cost 10
- 2. **a,c,b,d** cost 12

Example, two equivalent partial solutions:

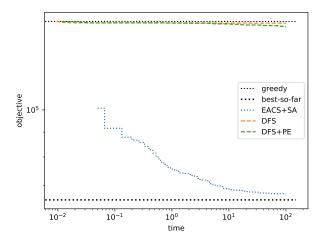
- 1. **a,b,c,d** cost 10
- 2. **a,c,b,d** cost 12

Discard (2) as it is "dominated" by (1).

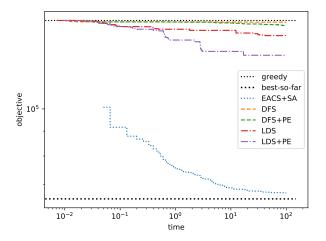
- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- \cdot best-so-far LKH3 with 100.000 seconds run (pprox 27h)



- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- \cdot best-so-far LKH3 with 100.000 seconds run (pprox 27h)



- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- \cdot best-so-far LKH3 with 100.000 seconds run (pprox 27h)



- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- \cdot best-so-far LKH3 with 100.000 seconds run (pprox 27h)



6 over 7 new-best-so-far solutions (the other one is probably optimal)

Instance	best known	BS+PE (600s)
R.500.100.15	5.284	5.261
R.500.1000.15	49.504	49.366
R.600.100.15	5.472	5.469
R.600.1000.15	55.213	54.994
R.700.100.15	7.021	7.020
R.700.1000.15	65.305	64.777

1% precedence constraints: large search space and poor guidance

1% precedence constraints: large search space and poor guidance15% precedence constraints: 5 children in average

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average
30% ,60% precedence constraints: proves optimality in a few milliseconds.

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average
30% ,60% precedence constraints: proves optimality in a few milliseconds.

The SOPLIB mainly contains heavily constrained instances:

- hard for MIPs and local searches
- but (relatively) easy for constructive algorithms
- \cdot thus the need to consider anytime tree searches

 \cdot The search-strategy choice is crucial

- \cdot The search-strategy choice is crucial
- \cdot (cheap) search space reductions are useful

EURO/ROADEF CHALLENGE 2018

Collaboration with Florian Fontan

EURO/ROADEF CHALLENGE

Presented by the French and European Operations Research societies

International competition

A challenge every two years:

- 2012: Google
- 2014: SNCF
- 2016: Air Liquide

EURO/ROADEF CHALLENGE

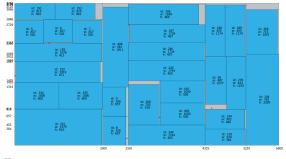
Presented by the French and European Operations Research societies

International competition

A challenge every two years:

- 2012: Google
- 2014: SNCF
- 2016: Air Liquide
- · 2018: Saint Gobain

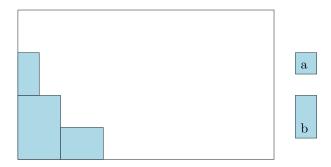
ONE OF OUR SOLUTIONS

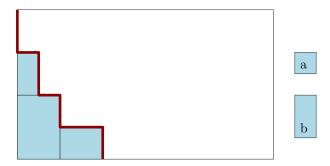


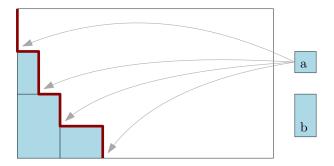
35/53

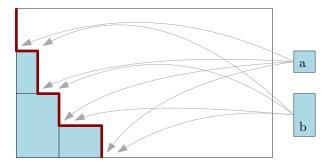
- Cutting & packing problem
- \cdot variant of the bin-packing

- Cutting & packing problem
- variant of the bin-packing
- with various constraints, some examples:
 - guillotine cuts
 - Defects
 - precedence constraints
- Large-size instances (up to 700 items)









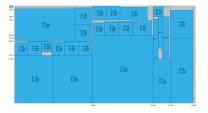
In this case, 8 children for this node

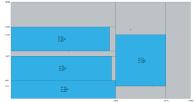
branch & bound ideas:

- (pseudo-)dominance rules
- symmetry-breaking rules

LET'S TALK ABOUT GUIDES (NODE GOODNESS MEASURE)

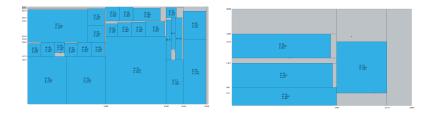
Which one should I keep?





LET'S TALK ABOUT GUIDES (NODE GOODNESS MEASURE)

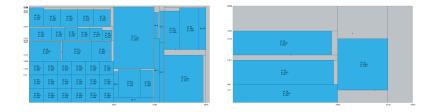
Which one should I keep?



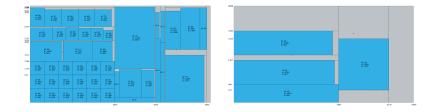
The less waste, the more attractive the partial solution

WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES

WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES



What happens when we use bounds as guides



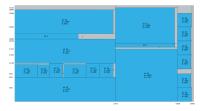
Problem with waste:

· Small items at the beginning and big items at the end

waste percentage mean item area

waste percentage mean item area



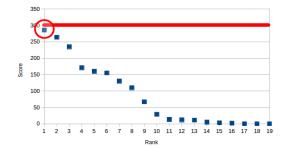


Much more efficient than the bound guide

Much more efficient than the bound guide cannot be used to prune nodes

Much more efficient than the bound guide cannot be used to prune nodes Thus the need to separate the two concepts

- Variant of Iterative Beam Search
- $\cdot\,$ replace the truncated BrFS by a truncated A*
- Called Iterative MBA*



- anytime tree search algorithm (IMBA*)
- combines exact-methods parts (dominances, etc.)
- new "heuristic" guidance strategy

These 3 components are required to provide a competitive algorithm.

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)
- \cdot We obtain state-of-the-art results on many variants
- $\cdot\,$ and very competitive on other variants

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)
- \cdot We obtain state-of-the-art results on many variants
- $\cdot\,$ and very competitive on other variants
- open-source software (PackingSolver)

BONUS TREE SEARCH FOR OTHER PROBLEMS

Collaboration with Aurélien Secardin and Pablo Andres Focke

LCS is a famous and well-studied optimization problem.

LCS is a famous and well-studied optimization problem. We present an **iterative beam search**: LCS is a famous and well-studied optimization problem. We present an **iterative beam search**:

with Pareto-dominance strategies

LCS is a famous and well-studied optimization problem. We present an **iterative beam search**:

- with Pareto-dominance strategies
- probability-based heuristic guidance strategy

LCS is a famous and well-studied optimization problem.

We present an **iterative beam search**:

- with Pareto-dominance strategies
- probability-based heuristic guidance strategy
- state-of-the-art (new best-known solutions on many instances)

Well studied problem $(F_m/permu/C_{max}, \text{ and } F_m/permu/\sum C_j)$

• with a search tree from a recent branch & bound (Gmys et al.)

- with a **search tree from a recent branch & bound** (Gmys et al.)
- \cdot guidance strategy similar the LR greedy heuristic

- with a search tree from a recent branch & bound (Gmys et al.)
- \cdot guidance strategy similar the LR greedy heuristic
- state-of-the-art results on large VRF instances (makespan)
- state-of-the-art results on large Taillard instances (flowtime)

WRAPPING-UP

Benefits from a large variety of contributions:

- exact methods (search space reductions)
- anytime tree search (AI/planning)
- meta-heuristics (guide functions)

Simple and efficient anytime tree search algorithms applied on various problems:

- \cdot sequential ordering problem
- EURO/ROADEF challenge
- generalization to Cutting & packing
- longest common subsequence
- permutation flowshop

 \cdot Apply anytime tree search on other problems

- Apply anytime tree search on other problems
- Learn guides automatically (ACO, Reinforcement Learning)

- Apply anytime tree search on other problems
- Learn guides automatically (ACO, Reinforcement Learning)
- More search-space reductions:
 - decision diagrams, ng-routes, etc.
 - MIP, CP

ANYTIME TREE SEARCH FOR COMBINATORIAL OPTIMIZATION THESIS DEFENSE

presented by: Luc Libralesso supervised by: Louis Esperet, Thibault Honegger, Vincent Jost July, 24, 2020

G-SCOP, Grenoble, France email: luc.libralesso@grenoble-inp.fr Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A computationally efficient branch-and-bound algorithm for the permutation flow-shop scheduling problem. 284(3):814–833. ISSN 0377-2217. doi: 10.1016/j.ejor.2020.01.039. URL http://www.sciencedirect.com/science/article/pii/

S037722172030076X.