ANYTIME TREE SEARCH FOR COMBINATORIAL OPTIMIZATION

THESIS DEFENSE

presented by: Luc Libralesso
supervised by: Louis Esperet, Thibault Honegger, Vincent Jost

July, 24, 2020

G-SCOP, Grenoble, France
email: luc.libralesso@grenoble-inp.fr

EXAMPLE OF A COMBINATORIAL OPTIMIZATION PROBLEM

the Traveling Salesman Problem

Gand™ © ouusseidorr

o rigon © Bruxelles Cologte
(T 0 >
ol \,
Pt '~ Belgique <
7 Francfor
. Luxembourg
l { Mane
Guernesey
Jersey &
Paris. ya
3
% Stasbourgf
Remed
y et
Namtes @ [
t
Suisse
France
s Genaveo”
Umages Clen Lgn
G’.ﬂ‘E Turin
s
Bordeau 1
Toulguse Montpellier Monaco
Santander 3 *
2 Marseille Cannes
3

Saint Sébastien
) 5
Bilbao

VitoriaBasteiz ~
Andoire

”" 1/53

EXAMPLE OF A COMBINATORIAL OPTIMIZATION PROBLEM

the Traveling Salesman Problem

Gand~ ©
© Bruxelles
°

. ovusseigorr
Cologne
o Brighton o
Southampton %

ol =
'~ Belgique <

Phmoutn
Francfor
~_ Luxembourg
l { Man
Guernesey
Jersey .
Paris ya
ry
Stasbour
Brest g
Renmes
ez
Nantes
)
Suisse
s Genaveo”
on
Turin
S
Bordeaw 1
Tol Montpellier Monaco
Santand 3 <
2 Saint-Sébastien Marseille Cannes
o T °
Bilbao

VitoriaBasteiz

o 1/53

ANOTHER EXAMPLE (GLASS WINDOW FACTORY)

Given some items, minimize the wasted area (bin packing variant)

THESE PROBLEMS ARE DIFFICULT (AND WE NEED TO SOLVE THEM)

They are N'P-Hard
huge number of solutions:

- if 100 cities: 100 feasible solutions.

3/53

THESE PROBLEMS ARE DIFFICULT (AND WE NEED TO SOLVE THEM)

They are N'P-Hard
huge number of solutions:

- if 100 cities: 100 feasible solutions.

And we have to make sure all the “situations” are covered to find the
best solution

3/53

SO, WHAT CAN WE DO?

Exact methods

explore all “situations”
(usually with a branch & bound)

4/53

SO, WHAT CAN WE DO?

Exact methods

explore all “situations”
(usually with a branch & bound)

pros:
always optimal
cons:

can take a long time

4/53

SO, WHAT CAN WE DO?

Exact methods

explore all “situations”
(usually with a branch & bound)

pros:
always optimal
cons:

can take a long time

examples:
Branch-and-bound
tree search

4/53

SO, WHAT CAN WE DO?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) | of solutions

pros:
always optimal
cons:

can take a long time

examples:
Branch-and-bound
tree search

4/53

SO, WHAT CAN WE DO?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) | of solutions

pros: pros:
always optimal find quickly a good solution
cons: cons:

can take a long time not always optimal
examples:

Branch-and-bound
tree search

4/53

SO, WHAT CAN WE DO?

Exact methods (meta-) heuristics

explore all “situations” explore a promising subset
(usually with a branch & bound) | of solutions

pros: pros:
always optimal find quickly a good solution

cons: cons:

can take a long time not always optimal

examples: examples:

Branch-and-bound tabu search, evolutionary algorithms
tree search ant colony optimization

4/53

ANYTIME TREE SEARCH ALGORITHMS

from heuristic search / Al planning communities

5/53

ANYTIME TREE SEARCH ALGORITHMS

from heuristic search / Al planning communities

- explore a tree (as branch & bounds)

5/53

ANYTIME TREE SEARCH ALGORITHMS

from heuristic search / Al planning communities

- explore a tree (as branch & bounds)

- start by the most promising regions (as meta-heuristics)

5/53

ANYTIME TREE SEARCH ALGORITHMS

from heuristic search / Al planning communities

- explore a tree (as branch & bounds)

- start by the most promising regions (as meta-heuristics)

,,//

ya

/

/branch & bounds B meta-heuristics
\ tree search “

5/53

ANYTIME TREE SEARCH ALGORITHMS (CONT.)

e

/

"branch & bounds SIS meta-heuristics |
\ tree search |

AN J/

N /

\

Why could it be interesting?

6/53

ANYTIME TREE SEARCH ALGORITHMS (CONT.)

e

/

"branch & bounds SIS meta-heuristics |
\ tree search |

AN J/

N /

\

Why could it be interesting?

- Combine search-space reductions from branch & bounds
- and guidance strategies from meta-heuristics

6/53

ANYTIME TREE SEARCH ALGORITHMS (CONT.)

,,/ -

// AN
/ \

/branch & bounds anytime meta-heuristics
\ tree search ‘:‘

Why could it be interesting?

- Combine search-space reductions from branch & bounds
- and guidance strategies from meta-heuristics

Not present in Operations Research
We study anytime tree search algorithms for classical OR problems

6/53

Anytime tree search algorithms

About the implementation

The sequential ordering problem

EURO/ROADEF challenge 2018

7/53

ANYTIME TREE SEARCH ALGORITHMS

7/53

EXAMPLE OF A BRANCH & BOUND

A

8/53

EXAMPLE OF A BRANCH & BOUND

AN

8/53

EXAMPLE OF A BRANCH & BOUND

AN N
\/

8/53

EXAMPLE OF A BRANCH & BOUND

AN
NTL/ y

8/53

EXAMPLE OF A BRANCH & BOUND

8/53

EXAMPLE OF A BRANCH & BOUND

A ANYAY
T@L/ |

8/53

EXAMPLE OF A BRANCH & BOUND

A ANYAY
T@L/ o

8/53

EXAMPLE OF A BRANCH & BOUND

8/53

THE ALGORITHM-DESIGN METHODOLOGY

1. define the search tree
2. define a bound (or guidance strategy)

9/53

THE ALGORITHM-DESIGN METHODOLOGY

1. define the search tree
2. define a bound (or guidance strategy)
3. search the resulting tree (generic part)

9/53

DEPTH FIRST SEARCH

O

10/53

DEPTH FIRST SEARCH

10/53

DEPTH FIRST SEARCH

10/53

DEPTH FIRST SEARCH

10/53

DEPTH FIRST SEARCH

10/53

DEPTH FIRST SEARCH

10/53

BEST (BOUND) FIRST / A*

11/53

BEST (BOUND) FIRST / A*

11/53

BEST (BOUND) FIRST / A*

11/53

BEST (BOUND) FIRST / A*

11/53

BEST (BOUND) FIRST / A*

11/53

BEST (BOUND) FIRST / A*

11/53

ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First

Pros

Cons

12/53

ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First
Pros | e Anytime
e Memory Bounded

Cons

12/53

ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First
Pros | e Anytime

e Memory Bounded
Cons | e suffers from early
bad decisions

12/53

ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First

Pros | e Anytime e opens less nodes

e Memory Bounded to close the instance
Cons | e suffers from early
bad decisions

12/53

ADVANTAGES AND DRAWBACKS

Depth First Search | A*/Best First

Pros | e Anytime e opens less nodes
e Memory Bounded to close the instance
Cons | e suffers from early | e not anytime
bad decisions e Can use too much

memory

12/53

BEAM SEARCH (D=3)

13/53

BEAM SEARCH (D=3)

13/53

BEAM SEARCH (D=3)

13/53

BEAM SEARCH (D=3)

13/53

BEAM SEARCH (D=3)

13/53

BEAM SEARCH (D=3)

13/53

ITERATIVE BEAM SEARCH

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D =2
- then 4, 8, etc.

14/53

ITERATIVE BEAM SEARCH

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D =2
- then 4, 8, etc.

A few properties:

- a complete/exact algorithm when the beam is wide enough

14/53

ITERATIVE BEAM SEARCH

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D =2
- then 4, 8, etc.

A few properties:

- a complete/exact algorithm when the beam is wide enough

- the algorithm may open a node multiple times...

14/53

ITERATIVE BEAM SEARCH

- starts a beam search of size D = 1 (greedy)
- then a beam search of size D =2
- then 4, 8, etc.

A few properties:

- a complete/exact algorithm when the beam is wide enough
- the algorithm may open a node multiple times...
- but not that much given some conditions (theorem)

- in average a node is reopened only once

14/53

HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:

15/53

HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:

- re-opening a node is almost free

15/53

HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:

- re-opening a node is almost free
- data-structures storing nodes usually cost an additional time

15/53

HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:

- re-opening a node is almost free
- data-structures storing nodes usually cost an additional time
- storing unexplored nodes saturates the memory (fast!)

15/53

HOw BAD RE-OPENINGS ARE?

In our algorithms, we open about a million nodes per second, thus:

- re-opening a node is almost free
- data-structures storing nodes usually cost an additional time
- storing unexplored nodes saturates the memory (fast!)

Thus, we believe it is an efficient strategy

15/53

ABOUT THE IMPLEMENTATION

Collaboration with Abdel-Malik Bouhassoun

16/53

A LARGE NUMBER OF TREE SEARCH ALGORITHMS

DFS, A* Beam Search and many others...

17/53

A LARGE NUMBER OF POSSIBLE MODIFICATIONS FOR EACH STRATEGY

- registering search statistics measuring

18/53

A LARGE NUMBER OF POSSIBLE MODIFICATIONS FOR EACH STRATEGY

- registering search statistics measuring

- dynamic-programming dominance pruning

18/53

A LARGE NUMBER OF POSSIBLE MODIFICATIONS FOR EACH STRATEGY

- registering search statistics measuring
- dynamic-programming dominance pruning

- online learning (ACO-style)

18/53

A LARGE NUMBER OF POSSIBLE MODIFICATIONS FOR EACH STRATEGY

- registering search statistics measuring

- dynamic-programming dominance pruning
- online learning (ACO-style)

- probing strategy

- etc.

18/53

FOR A TOTAL OF...

- 15 search algorithms
- 4 possible variations

19/53

FOR A TOTAL OF...

- 15 search algorithms
- 4 possible variations
- thus 15 x 2% = 240 possible combinations!

19/53

FOR A TOTAL OF...

- 15 search algorithms
- 4 possible variations
- thus 15 x 2% = 240 possible combinations!

we need a clever way to implement all of these variants

19/53

ENTER THE COMBINATORS

tree search algorithm

Problem specific tree

20/53

ENTER THE COMBINATORS

Tree Search

1 4

’ Combinator ‘

2 3
Node

21/53

INTRODUCING...

Gy

the CATS framework:

(CON\BINATOR-BASED ANYTIME TREE SEARCH)

22/53

INTRODUCING...

the CATS framework:

Gy

(CON\BINATOR-BASED ANYTIME TREE SEARCH)

implemented in C++ (efficient)

- 15+ tree search algorithms
- 5 combinators

- GNU/GPL license

22/53

THE SEQUENTIAL ORDERING PROBLEM

Collaboration with Abdel-Malik Bouhassoun and Hadrien Cambazard

23/53

SOP - PROBLEM DEFINITION

Asymmetric Traveling Salesman Problem with precedence constraints

2 d d
a$b : e a » b e
4 9
3
3 . .

24/53

THE BENCHMARK: SOPLIB

- Standard benchmark, proposed in 2006 (“large” instances)

25/53

THE BENCHMARK: SOPLIB

- Standard benchmark, proposed in 2006 (“large” instances)
- Some instances are almost precedence free

- Some are heavily constrained

- “in the middle” instances remain open (7 instances)

25/53

LITERATURE

Many methods implemented during the 30 last years to solve SOP

Exact methods: - Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/prunings

26/53

LITERATURE

Many methods implemented during the 30 last years to solve SOP

Exact methods: - Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/prunings

Meta-heuristics: - Local search (3-opt)
- Ant Colony Optimization (using a 3-opt move)
- others (GA, ABC, parallel roll-out, LKH ...)

26/53

LITERATURE

Many methods implemented during the 30 last years to solve SOP

Exact methods: - Branch and cuts
- Decision diagrams + CP
- Branch & Bounds with advanced bounds/prunings

Meta-heuristics: - Local search (3-opt)
- Ant Colony Optimization (using a 3-opt move)
- others (GA, ABC, parallel roll-out, LKH ...)

- Exact methods tend to build stronger bounds
- meta-heuristics strongly rely on 3-opt (local search)

26/53

IMPLICIT TREE - FORWARD BRANCHING

goal

27/53

DYNAMIC PROGRAMMING INSPIRED PRUNINGS

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12

28/53

DYNAMIC PROGRAMMING INSPIRED PRUNINGS

Example, two equivalent partial solutions:

1. a,b,c,d cost 10
2. a,c,b,d cost 12

Discard (2) as it is “dominated” by (1).

28/53

RESULTS - PERFORMANCE PROFILES ON R.700.1000.15

state-of-the-art:

- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- best-so-far LKH3 with 100.000 seconds run (= 27h)

_g ----- greedy
E 10° + best-so-far
= EACS+SA
T T T T
107t 10° 10! 10?

time 29/53

RESULTS - PERFORMANCE PROFILES ON R.700.1000.15

state-of-the-art:

- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- best-so-far LKH3 with 100.000 seconds run (= 27h)

----- greedy

- best-so-far
----- EACS+SA
--- DFS
--- DFS+PE

objective
=
o
o

29/53

RESULTS - PERFORMANCE PROFILES ON R.700.1000.15

state-of-the-art:

- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- best-so-far LKH3 with 100.000 seconds run (= 27h)

----- greedy
===+ best-so-far
----- EACS+SA

- DFS
--- DFS+PE
—-- LDS

—-- LDS+PE

objective
=
o
o
1
1

29/53

RESULTS - PERFORMANCE PROFILES ON R.700.1000.15

state-of-the-art:

- Enhanced Ant Colony System and Simulated Annealing (EACS+SA)
- best-so-far LKH3 with 100.000 seconds run (= 27h)

----- greedy
=+++ best-so-far
— BS

—— BS+PE
--- DFS

——- DFS+PE
----- EACS+SA
—-=- LDS
LDS+PE

objective
=
o
)

29/53

RESULTS - NEW BEST-SO-FAR SOLUTIONS

6 over 7 new-best-so-far solutions
(the other one is probably optimal)

Instance best known | BS+PE (600s)
R.500.100.15 5.284 5.261
R.500.1000.15 49.504 49.366
R.600.100.15 5.472 5.469
R.600.1000.15 55.213 54.994
R.700.100.15 7.021 7.020
R.700.1000.15 65.305 64.777

30/53

RESULTS - OVERVIEW

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance

31/53

RESULTS - OVERVIEW

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance

15% precedence constraints: 5 children in average

31/53

RESULTS - OVERVIEW

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average

30% ,60% precedence constraints: proves optimality in a few
milliseconds.

31/53

RESULTS - OVERVIEW

How this simple tree search behaves on the SOPLIB:

1% precedence constraints: large search space and poor guidance
15% precedence constraints: 5 children in average

30% ,60% precedence constraints: proves optimality in a few
milliseconds.

The SOPLIB mainly contains heavily constrained instances:

- hard for MIPs and local searches
- but (relatively) easy for constructive algorithms

- thus the need to consider anytime tree searches

31/53

WRAPPING-UP ON THE SOP

- The search-strategy choice is crucial

32/53

WRAPPING-UP ON THE SOP

- The search-strategy choice is crucial
- (cheap) search space reductions are useful

32/53

EURO/ROADEF CHALLENGE 2018

Collaboration with Florian Fontan

33/53

EURO/ROADEF CHALLENGE

Presented by the French and European Operations Research societies
International competition
A challenge every two years:

- 2012: Google
- 2014: SNCF
- 2016: Air Liquide

34/53

EURO/ROADEF CHALLENGE

Presented by the French and European Operations Research societies

International competition
A challenge every two years:

- 2012: Google

- 2014: SNCF

- 2016: Air Liquide

- 2018: Saint Gobain

SAINT-GOBAIN

34/53

ONE OF OUR SOLUTIONS

THE PROBLEM

- Cutting & packing problem
- variant of the bin-packing

36/53

THE PROBLEM

- Cutting & packing problem
- variant of the bin-packing
- with various constraints, some examples:

- guillotine cuts
- Defects
- precedence constraints

- Large-size instances (up to 700 items)

36/53

PLACE ITEMS IN THE CORNER RULE

Called a “staircase” representation
Place a remaining item at a possible position

T o

37/53

PLACE ITEMS IN THE CORNER RULE

Called a “staircase” representation
Place a remaining item at a possible position

37/53

PLACE ITEMS IN THE CORNER RULE

Called a “staircase” representation
Place a remaining item at a possible position

37/53

PLACE ITEMS IN THE CORNER RULE

Called a “staircase” representation
Place a remaining item at a possible position

In this case, 8 children for this node

37/53

ALONGSIDE

branch & bound ideas:

- (pseudo-)dominance rules

- symmetry-breaking rules

38/53

LET'S TALK ABOUT GUIDES (NODE GOODNESS MEASURE)

Which one should | keep?

39/53

LET'S TALK ABOUT GUIDES (NODE GOODNESS MEASURE)

Which one should | keep?

The less waste, the more attractive the partial solution

39/53

WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES

40/53

WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES

40/53

WHAT HAPPENS WHEN WE USE BOUNDS AS GUIDES

Problem with waste:

- Small items at the beginning and big items at the end

40/53

HOW TO CORRECT THIS BIAS?

waste percentage
mean item area

41/53

HOW TO CORRECT THIS BIAS?

waste percentage
mean item area

41/53

“HEURISTIC” GUIDES

Much more efficient than the bound guide

42/53

“HEURISTIC” GUIDES

Much more efficient than the bound guide
cannot be used to prune nodes

42/53

“HEURISTIC” GUIDES

Much more efficient than the bound guide
cannot be used to prune nodes
Thus the need to separate the two concepts

42/53

SEARCH STRATEGY

- Variant of Iterative Beam Search
- replace the truncated BrFS by a truncated A*
- Called Iterative MBA*

43/53

PERFORMANCE

350

250

200

Score

150 im

100

u
0 LELE B B .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Rank

44/53

CONCLUSIONS ON THE CHALLENGE

- anytime tree search algorithm (IMBA*)
- combines exact-methods parts (dominances, etc.)
- new “heuristic” guidance strategy

These 3 components are required to provide a competitive algorithm.

45/53

GENERALIZING THE ALGORITHM

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)

46/53

GENERALIZING THE ALGORITHM

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)
- We obtain state-of-the-art results on many variants

- and very competitive on other variants

46/53

GENERALIZING THE ALGORITHM

- Study over many well-studied variants in the literature
- large number of benchmarks (10+)

- We obtain state-of-the-art results on many variants

- and very competitive on other variants

- open-source software (PackingSolver)

46/53

BONUS
TREE SEARCH FOR OTHER PROBLEMS

Collaboration with Aurélien Secardin and Pablo Andres Focke

4753

LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.

48/53

LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

48/53

LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

- with Pareto-dominance strategies

48/53

LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

- with Pareto-dominance strategies

- probability-based heuristic guidance strategy

48/53

LONGEST COMMON SUBSEQUENCE (LCS)

LCS is a famous and well-studied optimization problem.

We present an iterative beam search:

- with Pareto-dominance strategies
- probability-based heuristic guidance strategy
- state-of-the-art (new best-known solutions on many instances)

48/53

PERMUTATION FLOWSHOP

Well studied problem (F,/permu/Cmax, and Fm/permu/ - C;)

49/53

PERMUTATION FLOWSHOP

Well studied problem (F,/permu/Cmax, and Fm/permu/ - C;)

We present an iterative beam search (again):

49/53

PERMUTATION FLOWSHOP

Well studied problem (F,/permu/Cmax, and Fm/permu/ - C;)

We present an iterative beam search (again):

- with a search tree from a recent branch & bound (Gmys et al.)

49/53

PERMUTATION FLOWSHOP

Well studied problem (F,/permu/Cmax, and Fm/permu/ - C;)

We present an iterative beam search (again):

- with a search tree from a recent branch & bound (Gmys et al.)

- guidance strategy similar the LR greedy heuristic

49/53

PERMUTATION FLOWSHOP

Well studied problem (F,/permu/Cmax, and Fm/permu/ - C;)

We present an iterative beam search (again):
- with a search tree from a recent branch & bound (Gmys et al.)
- guidance strategy similar the LR greedy heuristic

- state-of-the-art results on large VRF instances (makespan)
- state-of-the-art results on large Taillard instances (flowtime)

49/53

WRAPPING-UP

50/53

WHY DOES IT WORK?

Benefits from a large variety of contributions:

- exact methods (search space reductions)
- anytime tree search (Al/planning)
- meta-heuristics (guide functions)

51/53

CONTRIBUTIONS (ANYTIME TREE SEARCH ALGORITHMS)

Simple and efficient anytime tree search algorithms applied on
various problems:

- sequential ordering problem

- EURO/ROADEF challenge

- generalization to Cutting & packing
- longest common subsequence

- permutation flowshop

52/53

PERSPECTIVES

- Apply anytime tree search on other problems

53/53

PERSPECTIVES

- Apply anytime tree search on other problems

- Learn guides automatically (ACO, Reinforcement Learning)

53/53

PERSPECTIVES

- Apply anytime tree search on other problems
- Learn guides automatically (ACO, Reinforcement Learning)

- More search-space reductions:

- decision diagrams, ng-routes, etc.
- MIP, CP

53/53

ANYTIME TREE SEARCH FOR COMBINATORIAL OPTIMIZATION

THESIS DEFENSE

presented by: Luc Libralesso
supervised by: Louis Esperet, Thibault Honegger, Vincent Jost

July, 24, 2020

G-SCOP, Grenoble, France
email: luc.libralesso@grenoble-inp.fr

Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A
computationally efficient branch-and-bound algorithm for the
permutation flow-shop scheduling problem. 284(3):814-833. ISSN
0377-2217. doi: 10.1016/j.ejor.2020.01.039. URL
http://www.sciencedirect.com/science/article/pii/
5037722172030076X.

53/53

http://www.sciencedirect.com/science/article/pii/S037722172030076X
http://www.sciencedirect.com/science/article/pii/S037722172030076X

	Anytime tree search algorithms
	About the implementation
	The sequential ordering problem
	EURO/ROADEF challenge 2018
	Bonus: tree search for other problems
	Wrapping-up
	References

